AnswerAmontons's law. If the temperature is increased, the average speed and kinetic energy of the gas molecules increase. ... If the gas volume is decreased, the container wall area decreases and the molecule-wall collision frequency increases, both of which increase the pressure exerted by the gas (Figure 1).:
Explanation:
Answer:
A physical trait is visible to the naked eye, such as, having six fingers; and a character trait is invisible to the naked eye, such as, being charming. Both can be subjective, for instance, claiming somebody has a big nose is a subjective comment about somebody's physical appearance.
A rocket ship is accelerated by the SRB and the main engines for 2.0 minutes and the main engines for 8.5 minutes after the launch. The acceleration of the ship during the first 2.0 minutes is 11 m/s² (D).
A rocket ship has several engines and thrusters. We can divide its initial movement into 2 parts:
- From t = 0 min to t = 2.0 min, the SRB and the main engines act together and the speed goes from 0 m/s (rest) to 1341 m/s.
- From t = 2.0 min to t = 8.5 min, the main engines alone accelerate the ship form 1341 m/s to 7600 m/s.
We want to know the acceleration in the first part (first 2.0 minutes). We need to consider that:
- The speed increases from 0 m/s to 1341 m/s.
- The time elpased is 2.0 min.
- 1 min = 60 s.
The acceleration of the ship during the first 2.0 minutes is:

A rocket ship is accelerated by the SRB and the main engines for 2.0 minutes and the main engines for 8.5 minutes after the launch. The acceleration of the ship during the first 2.0 minutes is 11 m/s² (D).
Learn more: brainly.com/question/16274121
This is a physical change because cutting the string didn't change it chemically, but it did physically.
Answer:
To find the diameter of the wire, when the following are given:
Resistivity of the material (Rho), Current flowing in the conductor, I, Potential difference across the conductor ends, V, and length of the wire/conductor, L.
Using the ohm's law,
Resistance R = (rho*L)/A
R = V/I.
Crossectional area of the wire A = π*square of radius
Radius = sqrt(A/π)
Diameter = Radius/2 = [sqrt(A/π)]
Making A the subject of the formular
A = (rho* L* I)V.
From the result of A, Diameter can be determined using
Diameter = [sqrt(A/π)]/2. π is a constant with the value 22/7
Explanation:
Error and uncertainty can be measured varying the value of the parameters used and calculating different values of the diameters. Compare the values using standard deviation