Answer:
v = 54 m/s
Explanation:
Given,
The maximum height of the flight of golf ball, h = 150 m
The velocity at height h, u = 0
The velocity of the golf ball right before it hits the ground, v = ?
Using the III equations of motion
<em> v² = u² + 2gh</em>
Substituting the given values in the above equation,
v² = 0 + 2 x 9.8 x 150 m
= 2940
v = 54 m/s
Hence, the speed of the golf ball right before it hits the ground, v = 54 m/s
You could say almost anything.
For example:
phones,
cars,
computers,
clocks,
hydraulics,
bicycles,
the hadron collider,
Planes,
and so on.
Answer:
<em>The current is 11 Amperes</em>
Explanation:
<u>Electric Current</u>
The electric current is defined as a stream of charged particles that move through a conductive path.
The current intensity can be calculated as:

Where:
Q = Electric charge
t = Time taken by the charge to move through the conductor
The current intensity is often measured in Amperes.
The charge passing through a point in a circuit is Q= 55 c during t=5 seconds, thus the current intensity is:

I = 11 Amp
The current is 11 Amperes
Answer:
a much larger slit, the phenomenon of Sound diffraction that slits for light.
this is a series of equally spaced lines giving a diffraction envelope
Explanation:
The diffraction phenomenon is described by the expression
d sin θ = m λ
Where d is the distance of the slit, m the order of diffraction that is an integer and λ the wavelength.
For train the diffraction phenomenon, the d / Lam ratio is decisive if this relation of the gap separation in much greater than the wavelength does not reduce the diffraction phenomenon but the phenomena of geometric optics.
The wavelength range for visible light is 4 10⁻⁷ m to 7 10⁻⁷ m. The wavelength range for sound is 17 m to 1.7 10⁻² m. Therefore, with a much larger slit, the phenomenon of Sound diffraction that slits for light.
When we add a second slit we have the diffraction of each one separated by the distance between them, when the integrals are made we arrive at the result of the interference phenomenon, a this is a series of equally spaced lines giving a diffraction envelope
When I separate the distance between the two slits a lot, the time comes when we see two individual diffraction patterns
Answer:
exercise can lower levels