Answer:
Explanation:
We shall apply Gauss's theorem for electric flux to solve the problem . According to this theorem , total electric flux coming out of a charge q can be given by the following relation .
∫ E ds = q / ε
Here q is assumed to be enclosed in a closed surface , E is electric intensity on the surface so
∫ E ds represents total electric flux passing through the closed surface due to charge q enclosed in the surface .
This also represents total flux coming out of the charge q on all sides .
This is equal to q / ε where ε is a constant called permittivity which depends upon the medium enclosing the charge . For air , its value is 8.85 x 10⁻¹² .
If charge remains the same but radius of the sphere enclosing the charge is doubled , the flux coming out of charge will remain the same .
It is so because flux coming out of charge q is q / ε . It does not depend upon surface area enclosing the charge . It depends upon two factors
1 ) charge q and
2 ) the permittivity of medium ε around .
C I’m not that sure though

Actually Welcome to the Concept of the Optical Devices.
Now basically here the devices that can spread light over apart are the CONCAVE LENS and Convex mirror.
so the Answer is
C. B and D
Answer:
2.When they reach the bottom of the fall
Explanation:
The potential energy of the waterfall is maximum at the maximum height and decreases with decrease in height. Based on the law of conservation of mechanical energy, as the potential energy of the water fall is decreasing with decrease in height of the fall, its kinetic energy will be increasing and the kinetic energy will be maximum at zero height (bottom of the fall).
Thus, the correct option is "2" When they reach the bottom of the fall