Answer:
16.2 days
Explanation:
Find the number of halflives:
1/2 * 1/2 = 1/4 so <u>two</u> halflives have passed
2 * 8.1 days = 16.2 days
Http://tomschoderbekchem.blogspot.com/2014/09/nuclear-fission-and-fusion-worksheet.html
Answer:
Flow Rate = 80 m^3 /hours (Rounded to the nearest whole number)
Explanation:
Given
- Hf = head loss
- f = friction factor
- L = Length of the pipe = 360 m
- V = Flow velocity, m/s
- D = Pipe diameter = 0.12 m
- g = Gravitational acceleration, m/s^2
- Re = Reynolds's Number
- rho = Density =998 kg/m^3
- μ = Viscosity = 0.001 kg/m-s
- Z = Elevation Difference = 60 m
Calculations
Moody friction loss in the pipe = Hf = (f*L*V^2)/(2*D*g)
The energy equation for this system will be,
Hp = Z + Hf
The other three equations to solve the above equations are:
Re = (rho*V*D)/ μ
Flow Rate, Q = V*(pi/4)*D^2
Power = 15000 W = rho*g*Q*Hp
1/f^0.5 = 2*log ((Re*f^0.5)/2.51)
We can iterate the 5 equations to find f and solve them to find the values of:
Re = 235000
f = 0.015
V = 1.97 m/s
And use them to find the flow rate,
Q = V*(pi/4)*D^2
Q = (1.97)*(pi/4)*(0.12)^2 = 0.022 m^3/s = 80 m^3 /hours
Decrease the amount of work done.
Answer
It increases to B, then it decreases.
When the stone thrown upwards, it moves vertically upwards to a maximum height then is starts to come down. Due to gravitational force, the velocity of the stone projected upwards decreases but when coming down wards is increases.
The trajectory shown in the diagrams represents an example of an object projected upwards.
We can then says that the vertical component increases from A to B, then it decreases to C.