Answer:
At 430.34 K the reaction will be at equilibrium, at T > 430.34 the
reaction will be spontaneous, and at T < 430.4K the reaction will not
occur spontaneously.
Explanation:
1) Variables:
G = Gibbs energy
H = enthalpy
S = entropy
2) Formula (definition)
G = H + TS
=> ΔG = ΔH - TΔS
3) conditions
ΔG < 0 => spontaneous reaction
ΔG = 0 => equilibrium
ΔG > 0 non espontaneous reaction
4) Assuming the data given correspond to ΔH and ΔS
ΔG = ΔH - T ΔS = 62.4 kJ/mol + T 0.145 kJ / mol * K
=> T = [ΔH - ΔG] / ΔS
ΔG = 0 => T = [ 62.4 kJ/mol - 0 ] / 0.145 kJ/mol*K = 430.34K
This is, at 430.34 K the reaction will be at equilibrium, at T > 430.34 the reaction will be spontaneous, and at T < 430.4K the reaction will not occur spontaneously.
Answer: It's colder.
Explanation: Well for starters Valparaiso is further away from the equator, and Australia is already really hot. But say that Valparaiso is further from the equator should be good enough.
Answer:
18 oxygen atoms
Explanation:
in order to from the 6 molecules carbon dioxide and 6 molecules of water you will have a total of 18 oxygen atoms
<u>Answer:</u>
2.0158 grams
<u>Explantion:</u>
We are to find the mass of the hydrogen atoms in 1 mole of water.
We know that the formula of water is: 
We can see, from the above mentioned formula, that water has 2 hydrpgen atoms.
From the periodic table, we get to know that Hydrogen has an atomic mass of 1.00794 grams.
As there are 2 atoms of hydrogen in water so
grams is the answer
Weather... weather is the obvious answer