Resultant is the correct answer!
I'm pretty sure its Venus!!!
Answer:
Explanation:
Given that
From the diagram
By differentiating with time t
When x= 10 m
θ = 64.53°
Now by putting the value in equation
Therefore rate of change in the angle is 0.038\ rad/s
a) 2.75 s
The vertical position of the ball at time t is given by the equation
where
h = 4 m is the initial height of the ball
u = 12 m/s is the initial velocity of the ball (upward)
g = 9.8 m/s^2 is the acceleration of gravity (downward)
We can find the time t at which the ball reaches the ground by substituting y=0 into the equation:
This is a second-order equation. By solving it for t, we find:
t = -0.30 s
t = 2.75 s
The first solution is negative, so we discard it; the second solution, t = 2.75 s, is the one we are looking for.
b) -15.0 m/s (downward)
The final velocity of the ball can be calculated by using the equation:
where
u = 12 m/s is the initial (upward) velocity
g = 9.8 m/s^2 is the acceleration of gravity (downward)
t is the time
By subsisuting t = 2.75 s, we find the velocity of the ball as it reaches the ground:
And the negative sign means the direction is downward.