Knowing the ratio between atoms we can write an empirical formula:
<span>C4H6O </span>
<span>we compute the molar mass of this single formula: </span>
<span>4x12 + 6 x 1 + 16 x1 = 70 g / mol </span>
<span>Now, as we know the actual molar mas being 280 g/mol, we divide this number by 70 and we get the ratio between empirical formula and molecular actual formula: </span>
<span>280 / 70 = 4 </span>
<span>This means that actual molecular formula is: </span>
<span>(C4H6O)4 or </span>
<span>C16H24O4 </span>
Answer:
Mass = 13.23 g
Explanation:
Given data:
Mass of oxygen = 48.0 g
Mass of propane burn = ?
Solution:
Chemical equation:
C₃H₈ + 5O₂ → 3CO₂ + 4H₂O
Number of moles of oxygen:
Number of moles = mass/molar mass
Number of moles = 48.0 g/ 32 g/mol
Number of moles = 1.5 mol
now we will compare the moles of propane and oxygen.
O₂ : C₃H₈
5 : 1
1.5 : 1/5×1.5 = 0.3 mol
Mass of propane burn:
Mass = number of moles × molar mass
Mass = 0.3 mol × 44.1 g/mol
Mass = 13.23 g
Answer:
The answer is both molecule and an element
Hydrogen is the chemical element with the symbol H and atomic number 1. ... At standard conditions hydrogen is a gas of diatomic molecules having the formula H2. It is colorless, odorless, non-toxic, and highly combustible.
Explanation:
In an ionic compound the atoms are linked via ionic bonds. These are formed by the transfer of electrons from one atom to the other. The atom that loses electrons gains a positive charge whereas the atom that accepts electrons gains a negative. This happens in accordance with the octet rule wherein each atom is surrounded by 8 electrons
In the given example:
The valence electron configuration of Iodine (I) = 5s²5p⁵
It needs only one electron to complete its octet.
In the given options:
K = 4s¹
C = 2s²2p²
Cl = 3s²3p⁵
P = 3s²3p³
Thus K can donate its valence electron to Iodine. As a result K, will gain a stable noble gas configuration of argon while iodine would gain an octet. This would also balance the charges as K⁺I⁻ creating a neutral molecule.
Ans: Potassium (K)
Answer:
23.0 s⁻¹ is rate constant
Explanation:
Using the Arrhenius equation:
k = A * e^(-Ea/RT)
Where k is rate constant
A is frequency factor (1.5x10¹¹s⁻¹)
Ea is activation energy = 55800J/mol
R is gas constant (8.314J/molK)
And T is absolute temperature (24°C + 273 = 297K)
Replacing:
k = 1.5x10¹¹s⁻¹ * e^(-55800J/mol/8.314J/molK*297K)
k = 1.5x10¹¹s⁻¹ * 1.53x10⁻¹⁰
k = 23.0 s⁻¹ is rate constant i hope this helpsss
Explanation: