Answer:
<em>The second particle will move through the field with a radius greater that the radius of the first particle</em>
Explanation:
For a charged particle, the force on the particle is given as

also recall that work is force times the distance traveled
work = F x d
so, the work on the particle = F x d,
where the distance traveled by the particle in one revolution = 
Work on a particle = 2πrF = 
This work is proportional to the energy of the particle.
And the work is also proportional to the radius of travel of the particles.
Since the second particle has a bigger speed v, when compared to the speed of the first particle, then, the the second particle has more energy, and thus will move through the field with a radius greater that the radius of the first particle.
Answer:if 1 m = 100 cm then there should be 200 cm in m^2
Explanation:
Answer:
f = 2 Hz
Explanation:
The frequency of a wave is defined as the no. of waves passing per unit of time. Therefore, the frequency of a wave can be calculated by the following formula:

where,
f = frequency of the wave = ?
t = time passed = 1 s
n = no. of waves passing in time t = 2
Therefore,

<u>f = 2 Hz</u>
If the scale is not "zeroed". If you do not use grams (g) to lable your products. If you do not unlock the balance. [that's about all I got doll]
Answer:
0.799 m/s if air resistance is negligible.
Explanation:
For how long is the ball in the air?
Acceleration is constant. The change in the ball's height
depends on the square of the time:
,
where
is the change in the ball's height.
is the acceleration due to gravity.
is the time for which the ball is in the air.
is the initial vertical velocity of the ball.
- The height of the ball decreases, so this value should be the opposite of the height of the table relative to the ground.
. - Gravity pulls objects toward the earth, so
is also negative.
near the surface of the earth. - Assume that the table is flat. The vertical velocity of the ball will be zero until it falls off the edge. As a result,
.
Solve for
.
;
;
;
.
What's the initial horizontal velocity of the ball?
- Horizontal displacement of the ball:
; - Time taken:

Assume that air resistance is negligible. Only gravity is acting on the ball when it falls from the tabletop. The horizontal velocity of the ball will not change while the ball is in the air. In other words, the ball will move away from the table at the same speed at which it rolls towards the edge.
.
Both values from the question come with 3 significant figures. Keep more significant figures than that during the calculation and round the final result to the same number of significant figures.