Answer:
The law of conservation of energy can be seen in these everyday examples of energy transference: Water can produce electricity. Water falls from the sky, converting potential energy to kinetic energy. This energy is then used to rotate the turbine of a generator to produce electricity.
Explanation:
B. We can see only one side of the Moon from Earth.
( we only see one side of the moon because the moon rotates around the Earth)
Answer:
The minimum speed = 
Explanation:
The minimum speed that the rocket must have for it to escape into space is called its escape velocity. If the speed is not attained, the gravitational pull of the planet would pull down the rocket back to its surface. Thus the launch would not be successful.
The minimum speed can be determined by;
Escape velocity = 
where: G is the universal gravitational constant, M is the mass of the planet X, and R is its radius.
If the appropriate values of the variables are substituted into the expression, the value of the minimum speed required can be determined.
They are not the same event in that they occur in different places and times in most frames of reference. In the photon's frame they are not separated in either space nor time because photons don't experience time and at least mathematically all points on the spacetime manifold are the same point to a photon. What the zero spacetime interval can tell us though, is that the events are connected by a light beam (light-like separation). There is as much time between the events as there is space and one event can conceptually cause the other. They are on the cusp between time-like and space-like events.
Where is the “part 2” to view ?