It creates friction on the forward moving object, causing it to loose momentum, until finally, it stops.
Hope this helps!
The direction of an electric current is by convention the direction in which a positive charge would move. Thus, the current in the external circuit is directed away from the positive terminal and toward the negative terminal of the battery. Electrons would actually move through the wires in the opposite direction.
Answer:
13.51 nm
Explanation:
To solve this problem, we are going to use angle approximation that sin θ ≈ tan θ ≈ θ where our θ is in radians
y/L=tan θ ≈ θ
and ∆θ ≈∆y/L
Where ∆y= wavelength distance= 2.92 mm =0.00292m
L=screen distance= 2.40 m
=0.00292m/2.40m
=0.001217 rad
The grating spacing is d = (90000 lines/m)^−1
=1.11 × 10−5 m.
the small-angle
approx. Using difraction formula with m = 1 gives:
mλ = d sin θ ≈ dθ →
∆λ ≈ d∆θ = =1.11 × 10^-5 m×0.001217 rad
=0.000000001351m
= 13.51 nm
Answer:
C) 6 m/s
Explanation:
Given that
m₁=5000 kg
The initial velocity of 5000 kg car =u₁
m₂=10,000 kg
The initial velocity of 10000 kg car =u₂ = 0 m/s
After collision the final speed of the both car,v = 2 m/s
There is no any external force on the system that is why linear momentum will be conserved.
Linear momentum P = m v
m₁u₁ + m₂u₂ = (m₂ + m₁) v
5000 x u₁ + 10000 x 0 = (5000 + 10000) x 2
5000 x u₁ = 15000 x 2
5 x u₁ = 15 x 2
u₁ = 6 m/s
Therefore the answer is C.
C) 6 m/s
Answer:
= 2 beats per seconds
Explanation:
- From |f -f'| = modulus of the difference between the frequency given.
- Difference between the frequency will give us the number of beat per seconds.
These also shows how to get the period of the tuning forks.