Answer:
B. CH3Br
Explanation:
Dipole -Dipole interactions take place in polar molecules.
CH3Br exhibits dipole -dipole forces as its strongest attraction between molecules because it is a polar molecule due to the slightly negative dipole present on the Br molecule.
While O2 is a nonpolar molecule due to its linear structure, CCl4 has zero resultant dipole moment, Helium is non-polar and BrCH2CH2OH is a non polar compound having net dipole moment is zero.
Hence, the correct option is B. CH3Br.
The alcohol concentration of the mixed solution is 20%
Simplification :
Based on the given condition, formulate :
35% ×0.40 + 0.6 ×10% ÷{ 0.4+0.6}
Calculate the product :
Calculate the sum or difference : 
Any fraction with denominator 1 is equal to numerator : 0.2
Multiply a number to both numerator, denominator : 0.2 ×
Calculate the product or quotient : 
A fraction with denominator equals to 100 to a percentage 20%.
How do you find the concentration of a mixed solution?
In general when your are mixing two different concentrations together first calculate number of moles for each solution (n=CV ,V-in liter) then add them together it will be total moles,then concentration of mixture will be = total moles / total volume(liter).
Learn more about concentration of alcohol :
brainly.com/question/13220698
#SPJ4
A Hydrogen bond will stablish between the protons of the water and the free electron pairs of the electronegative atoms on asparagine, so:
a) can make up to 2 hydrogen bonds, since it has 2 free electron pairs.
b) can make up to 3 hydrogen bonds, since the negative charge makes up for 1 free electron pair aditional to the 2 oxygen already has.
c) can make up to 1 hydrogen bond, since it has 1 free electron pair.
d) since they have no free electron pairs, they cannot establish hydrogen bonds.