Answer:
Explanation:
Let the magnitude of magnetic field be B .
flux passing through the coil's = area of coil x field x no of turns
Φ = 3.13 x 10⁻⁴ x B x 135 = 422.55 x 10⁻⁴ B .
emf induced = dΦ / dt , Φ is magnetic flux.
current i = dΦ /dt x 1/R
charge through the coil = ∫ i dt
= ∫ dΦ /dt x 1/R dt
= 1 / R ∫ dΦ
= Φ / R
Total resistance R = 61.1 + 44.4 = 105.5 ohm .
3.44 x 10⁻⁵ = 422.55 x 10⁻⁴ B / 105.5
B = 3.44 x 10⁻⁵ x 105.5 / 422.55 x 10⁻⁴
= .86 x 10⁻¹
= .086 T .
Uneven heating of land and sea causes warm air over land to rise up, creating a low pressure zone. So wind blows in from the sea to fill this low pressure zone
Answer:
The maximum height above the point of release is 11.653 m.
Explanation:
Given that,
Mass of block = 0.221 kg
Spring constant k = 5365 N/m
Distance x = 0.097 m
We need to calculate the height
Using stored energy in spring
...(I)
Using gravitational potential energy
....(II)
Using energy of conservation




Where, k = spring constant
m = mass of the block
x = distance
g = acceleration due to gravity
Put the value in the equation


Hence, The maximum height above the point of release is 11.653 m.
Answer:
The approximate change in entropy is -14.72 J/K.
Explanation:
Given that,
Temperature = 22°C
Internal energy 
Final temperature = 16°C
We need to calculate the approximate change in entropy
Using formula of the entropy

Where,
= internal energy
T = average temperature
Put the value in to the formula


Hence, The approximate change in entropy is -14.72 J/K.