This is what I got:
Net force in the Y direction:
ΣFy = T1 - T2
F = ma
ma = T1 - T2
Isolate for T2
ma - T1 = -T2
Multiply by -1
T1 - ma = T2
100 - (3)(2) = T2
100 - 6 = T2
T2 = 94 N
The unit of the quotient of inductance and resistance will be Henry and ohm
Inductance is the tendency of an electrical conductor to oppose a change in the electric current flowing through it. The flow of electric current creates a magnetic field around the conductor. The field strength depends on the magnitude of the current, and follows any changes in current.
Resistance is a measure of the opposition to current flow in an electrical circuit. Resistance is measured in ohms, symbolized by the Greek letter omega (Ω). Ohms are named after Georg Simon Ohm (1784-1854), a German physicist who studied the relationship between voltage, current and resistance.
unit of quotient of inductance = henry (H)
unit of resistance = ohm
To learn more about resistance here
brainly.com/question/14547003
#SPJ4
The coefficient of kinetic friction<span> is the force between two objects when one object is moving, or if two objects are moving against each other</span>
Answer:
![r_{cm}=[12.73,12.73]cm](https://tex.z-dn.net/?f=r_%7Bcm%7D%3D%5B12.73%2C12.73%5Dcm)
Explanation:
The general equation to calculate the center of mass is:

Any differential of mass can be calculated as:
Where "a" is the radius of the circle and λ is the linear density of the wire.
The linear density is given by:

So, the differential of mass is:


Now we proceed to calculate X and Y coordinates of the center of mass separately:


Solving both integrals, we get:


Therefore, the position of the center of mass is:
![r_{cm}=[12.73,12.73]cm](https://tex.z-dn.net/?f=r_%7Bcm%7D%3D%5B12.73%2C12.73%5Dcm)
I would say the answer to your question is A Ferris wheel turning at a constant speed. The reasoning behind this answer is the fact that traveling in a constant direction at a constant speed is not accelerating. The Ferris wheel is the only option that fits this description. The last option would be incorrect due to independent causes such as speed limit changes as well as turns and stops on the highway.