Answer: 
Explanation:
According to the described situation we have the following data:
Horizontal distance between lily pads: 
Ferdinand's initial velocity: 
Time it takes a jump: 
We need to find the angle
at which Ferdinand jumps.
In order to do this, we first have to find the <u>horizontal component (or x-component)</u> of this initial velocity. Since we are dealing with parabolic movement, where velocity has x-component and y-component, and in this case we will choose the x-component to find the angle:
(1)
(2)
(3)
On the other hand, the x-component of the velocity is expressed as:
(4)
Substituting (3) in (4):
(5)
Clearing
:

This is the angle at which Ferdinand the frog jumps between lily pads
Sound travels fastest in solids. A sound is a vibration that travels in a longitudinal direction through a medium in the form of a mechanical wave.
<h3>What is sound?</h3>
A sound is a vibration that travels in a longitudinal direction through a medium in the form of a mechanical wave.
It can propagate through a solid, a liquid, or a gas as its medium. Solids go the fastest, liquids are slower, and gases are the slowest.
Sound travels the quickest through a solid because the molecules are packed together densely, allowing sound waves to leap from one molecule to the next more quickly.
Because the molecules in solids are packed the tightest, sound travels the quickest through them, whereas sound travels the slowest through gases.
To learn more about the sound refer to the link;
brainly.com/question/927975
Most of the mass is located in the nucleus as suggested by Rutherford's gold foil experiment.
Answer:
force F = 1.66 ×
N
Explanation:
given data
proton and an electron = 865 nm
solution
we get here force that is express as
force F = k q1 q2 ÷ r² ......................1
put here value and we get
force F = 9 ×
×
force F = 1.66 ×
N
For the answer to the question above, let us first start with relaxation time. it is the absence of an external electric field, the free electrons in a metallic substance will move in random directions so that the resultant velocity of free electrons in any direction is equal to zero. While the Collision time it is<span> the mean </span>time<span> required for the direction of motion of an individual type particle to deviate through approximately as a consequence of </span>collisions<span> with particles of type.</span>