1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
12345 [234]
3 years ago
15

When a student stands on a rotating table,the frictional force exerted on the student by the table is?

Physics
1 answer:
lakkis [162]3 years ago
7 0

Answer:

Less

Explanation:

because static friction is more than rolling friction

You might be interested in
g A ball thrown straight up into the air is found to be moving at 7.94 m/s after falling 2.72 m below its release point. Find th
kati45 [8]

The ball has height <em>y</em> and velocity <em>v</em> at time <em>t</em> according to

<em>y</em> = <em>v</em>₀ <em>t</em> - 1/2 <em>g</em> <em>t</em> ²

and

<em>v</em> = <em>v</em>₀ - <em>g t</em>

where <em>v</em>₀ is its initial speed and <em>g</em> = 9.80 m/s² is the magnitude of the acceleration due to gravity.

The ball is falling with a velocity of 7.94 m/s when it's 2.72 m below the release point, which at time <em>t </em>such that

-2.72 m = <em>v</em>₀ <em>t</em> - 1/2 <em>g</em> <em>t</em> ²

-7.94 m/s = <em>v</em>₀ - <em>g t</em>

Solve for <em>t</em> in the second equation:

<em>t </em>= (<em>v</em>₀ + 7.94 m/s)/<em>g</em>

Substitute this into the first equation and solve for <em>v</em>₀ :

-2.72 m = <em>v</em>₀ (<em>v</em>₀ + 7.94 m/s) /<em>g</em> - 1/2 <em>g</em> ((<em>v</em>₀ + 7.94 m/s)/<em>g</em>)²

-2.72 m = <em>v</em>₀²/<em>g</em> + (7.94 m/s) <em>v</em>₀/<em>g</em> - 1/2 (<em>v</em>₀ + 7.94 m/s)²/<em>g</em>

2 (-2.72 m) <em>g</em> = 2<em>v</em>₀² + 2 (7.94 m/s) <em>v</em>₀ - (<em>v</em>₀ + 7.94 m/s)²

2 (-2.72 m) (9.80 m/s²) = 2<em>v</em>₀² + (15.9 m/s) <em>v</em>₀ - (<em>v</em>₀² + (15.9 m/s) <em>v</em>₀ + 63.0 m²/s²)

-53.3 m²/s² = <em>v</em>₀² - 63.0 m²/s²

<em>v</em>₀² = 9.73 m²/s²

<em>v</em>₀ = 3.12 m/s

3 0
3 years ago
A car accelerates at a constant rate from 0 to 50 mph in three fourths min. How far does the car travel during that​ time?
Helen [10]

Answer:

the car have travelled 0.31 mile during that​ time

Explanation:

Applying the Equation of motion;

s = 0.5(u+v)t

Where;

s = distance travelled

u = initial speed = 0 mph

v = Final speed = 50 mph

t = time taken = 3/4 min = 3/4 ÷ 60 hours = 1/80 hour

Substituting the given values into the equation;

s = 0.5(0+50)×(1/80)

s = 0.3125 miles

s ~= 0.31 mile

the car have travelled 0.31 mile during that​ time

8 0
3 years ago
A stone with a mass m is dropped from an airplane that has a horizontal velocity v at a height h above a lake. If air resistance
seropon [69]

Answer: Option B. R = (1/2)gt^2

Explanation:

S = R (horizontal distance)

V^2 = 2gS

V^2 = 2gR

R = V^2 / 2g

But V = gt

R = (gt)^2 / 2g

R = (g^2 x t^2) / 2g

R = gt^2 / 2

But t^2 = 2h/g

R = ( g x 2h/g) / 2

R = h

But h = (1/2)gt^2

R = h = (1/2)gt^2

4 0
3 years ago
A solid conducting sphere is given a positive charge q. How is the charge q distributed in or on the sphere?
leva [86]

Answer:

Explanation:

the sphere is solid and conducting, so the charge is uniformly distributed over its volume.

7 0
3 years ago
Read 2 more answers
Two small plastic spheres are given positive electrical charges. When they are a distance of 14.8cm apart, the repulsive force b
sdas [7]

Answer:

Explanation:

Case I: They have same charge.

Charge on each sphere = q

Distance between them, d = 14.8 cm = 0.148 m

Repulsive force, F = 0.235 N

Use Coulomb's law in electrostatics

F=\frac{Kq_{1}q_{2}}{d^{2}}

By substituting the values

0.235=\frac{9\times10^{9}q^{2}}{0.148^{2}}

q=7.56\times10^{-7}C

Thus, the charge on each sphere is q=7.56\times10^{-7}C.

Case II:

Charge on first sphere = 4q

Charge on second sphere = q

distance between them, d = 0.148 m

Force between them, F = 0.235 N

Use Coulomb's law in electrostatics

F=\frac{Kq_{1}q_{2}}{d^{2}}

By substituting the values

0.235=\frac{9\times 10^{9}\times 4q^{2}}{0.148^{2}}

q=3.78\times10^{-7}C

Thus, the charge on second sphere is q=3.78\times10^{-7}C and the charge on first sphere is 4q = 4\times 3.78\times 10^{-7}=1.51 \times 10^{-6} C.

6 0
3 years ago
Other questions:
  • A 1700kg rhino charges at a speed of 50.0km/h. what average force is needed to bring the rhino to a stop in 0.50s?
    8·1 answer
  • Which type of environmental science career involves collecting information about how human events impact the environment?
    5·2 answers
  • Three taxi cabs make a complete trip from downtown to the airport and back in 15 , 33 and 55 minutes, respectively. If all three
    11·1 answer
  • How do you find the value of e?
    12·1 answer
  • A cannonball is launched with initial velocity of magnitude v0 over a horizontal surface. At what minimum angle
    6·1 answer
  • Assume a change at the source of sound reduces the wavelength of a sound wave in air by a factor of 3.
    14·1 answer
  • The magnetic field of an electromagnetic wave in a vacuum is Bz =(2.4μT)sin((1.05×107)x−ωt), where x is in m and t is in s. You
    12·1 answer
  • What is the magnitude of an electric field in which the electric force it exerts on a proton is equal in magnitude to the proton
    10·1 answer
  • With Brainly, what happens if no one answers your question? Do you get points back?
    11·2 answers
  • Which of the following would most likely produce the strongest magnetic
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!