1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Schach [20]
3 years ago
10

A forest ranger might be ranked as being high in what type of intelligence?

Physics
1 answer:
Drupady [299]3 years ago
7 0
<h2>Answer:</h2>

<u>A forest ranger might be ranked as being high in </u><u>Naturalistic</u><u> intelligence.</u>

<h2>Explanation:</h2>

Naturalistic intelligence is the type of intelligence that relates the activities of people that how sensitive an individual is to nature and the world. Zookeepers, biologists, gardeners, and veterinarians are among those people who have a higher capability of having high naturalist intelligence. Similarly a ranger who is fighting in forests must also be kept in the same category and he might be ranked as being high in the field of Naturalistic Intelligence.

You might be interested in
A space expedition discovers a planetary system consisting of a massive star and several spherical planets. The planets all have
Juliette [100K]

Answer:

T/√8

Explanation:

From Kepler's law, T² ∝ R³ where T = period of planet and R = radius of planet.

For planet A, period = T and radius = 2R.

For planet B, period = T' and radius = R.

So, T²/R³ = k

So, T²/(2R)³ = T'²/R³

T'² = T²R³/(2R)³

T'² = T²/8

T' = T/√8

So, the number of hours it takes Planet B to complete one revolution around the star is T/√8

7 0
3 years ago
How long does light take to travel from the sun to earth? heres the exact question: light travels at 300,000 km.s. The sun is a
Artist 52 [7]
I've heard it takes around 8 min
4 0
3 years ago
Consider two identical objects of mass m = 0.250 kg and charge q = 4.00 μC. The first charge is held in place at the origin of a
Gnom [1K]

Answer:

a = 640 m/s²

Explanation:

From work-kinetic energy principles,

The net force acting on the second object is the gravitational force and the electric force due to the first object.

So, the gravitational force on the mass is F₁ = Gm₁m₂/r² since m₁ = m₂ = m, U = -Gm²/r²

Also, the electric force on the charge is F₂ = kq₁q₂/r² since q₁ = q₂ = q, U = kq²/r²

The net Force F = ma

So, -F₁ + F₂ = F     (F₁ is negative since it is an attractive force in the negative x -direction and F₂ is positive since it is a repulsive force in the positive x- direction)

-Gm²/r² + kq²/r² = ma

ma = -Gm²/r² + kq²/r²

a = (-Gm²/r² + kq²/r²)/m

a = (-G + kq²/m²)m/r²

Since m = 0.250 kg, q = 4.00 μC = 4.00 × 10⁻⁶ C, r = 3.00 cm = 3.00 × 10⁻² m, G = 6.67 × 10⁻¹¹ Nm²/kg², k = 9 × 10⁹ Nm²/C² and a = acceleration of second mass.

Substituting the variables into the equation, we have

a = (m/r²)(-G + k(q/m)²)]

a = (0.250 kg/{3.00 × 10⁻² m}²)(-6.67 × 10⁻¹¹ Nm²/kg² + 9 × 10⁹ Nm²/C²(4.00 × 10⁻⁶ C/0.250 kg)²)

a = (0.250 kg/9.00 × 10⁻⁴ m)(-6.67 × 10⁻¹¹ Nm²/kg² + 9 × 10⁹ Nm²/C²(16 × 10⁻⁶ C/kg)²)]

a = (0.250 kg/9.00 × 10⁻⁴ m)(-6.67 × 10⁻¹¹ Nm²/kg² + 9 × 10⁹ Nm²/C²(256 × 10⁻¹² C²/kg²)]

a = (0.250 kg/9.00 × 10⁻⁴ m)(-6.67 × 10⁻¹¹ Nm²/kg² + 2304 × 10⁻³ Nm²/kg²  ]

a = (0.250 kg/9.00 × 10⁻⁴ m)(2.304 Nm²/kg²)

a = 0.576 Nm²/kg /9.00 × 10⁻⁴ m²

a = 0.064 × 10⁴N/kg

a = 64 × 10 N/kg)

a = 640 m/s²

8 0
3 years ago
A batter hits a pop fly, and the baseball (with a mass of 148 g) reaches an altitude of 265 ft. If we assume that the ball was 3
den301095 [7]

Answer:

The increase in potential energy of the ball is 115.82 J

Explanation:

Conceptual analysis

Potential Energy (U) is the energy of a body located at a certain height (h) above the ground and is calculated as follows:

U = m × g × h

U: Potential Energy in Joules (J)

m: mass in kg

g: acceleration due to gravity in m/s²

h: height in m

Equivalences

1 kg = 1000 g

1 ft = 0.3048 m

1 N = 1 (kg×m)/s²

1 J = N × m

Known data

h_2 = 265ft * \frac{0.3048m}{ft} = 80.77m

h_1 = 3ft * \frac{0.3048m}{ft} = 0.914m

m = 148g*\frac{1kg}{1000g} = 0.148kg

g = 9.8 \frac{m}{s^2}

Problem development

ΔU: Potential energy change

ΔU = U₂ - U₁

U₂ - U₁ = mₓgₓh₂ - mₓgₓh₁

U₂ - U₁ = mₓg(h₂ - h₁)

U_2 - U_1 = 0.148kg * 9.8 \frac{m}{s^2}*(80.77m - 0.914m) = 115.82 N * m = 115.82J

The increase in potential energy of the ball is 115.82 J

5 0
3 years ago
Which statement is TRUE?
Salsk061 [2.6K]
Statement B is true.
3 0
3 years ago
Read 2 more answers
Other questions:
  • What kind of charge does an object have if it has gained electrons
    11·2 answers
  • What a dynamics stretch is​
    11·1 answer
  • Find the average speed of a horse that traveled east for 25km in 4 hours.
    15·1 answer
  • If an object on a horizontal frictionless surface is attached to a spring, displaced, and then released, it will oscillate. If i
    8·2 answers
  • Explain how a covalent compound can be a strong electrolyte and give an example.
    7·1 answer
  • A mosquito flying at 3 m/s that encounters a breeze blowing at 3 m/s in the same direction has a speed of
    14·1 answer
  • During one year a population of blue jays has zero population growth. which must be true about the blue jay population at the en
    10·2 answers
  • What type of image is formed by the following mirror?
    10·1 answer
  • Ruby was training for a race at the high school track. She took her dog walked 2250 meters in 15 minutes. Calculate the average
    12·1 answer
  • 9. If a car travels 18,000 meters in 30 minutes, what is its average speed?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!