Answer:

Explanation:
<u>Given:</u>
Force = f = 60 N
Mass = m = 12 kg
<u>Required:</u>
Acceleration = a = ?
<u>Formula:</u>
F = ma
<u>Solution:</u>
Rearranging formula
a = F / m
a = 60 / 12
a = 5 ms⁻²
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
Hope this helped!
<h3>~AH1807</h3><h3>Peace!</h3>
It was in Texas on September 8, 1900.
It's a Newton Meter Those two are multiplied to get a joule.
Answer: You do not specify what is being asked for. ∆E? ∆H?
∆E = (430 - 238) J = 192 J
∆H = 430 J
Explanation:
If asked for the value of ∆H the answer is simply the change in heat, and in the question, it states introduction of 430 J of heat is causing the system to expand.
Therefore ∆H = 430 J
If asked for ∆E, we know that ∆E = ±q (heat) + work (-P∆V) = ±q + w
The question states that 238 J of work are done AND the system expanded
(work is negative because expansion means work is done BY the system, releasing energy/heat... Conversely, if the system were compressed, work is done ON the system, absorbing heat/energy)
Therefore, ∆E = (430 - 238) J = 192 J
Answer:
Use of telemetry and radar astronomy
Explanation:
An astronomical Unit (AU) is a unit of measuring distances in outer space, which is based on the approximate distance between the earth and the Sun.
After several years of trying to approximate the distance between the Sun and the Earth using several methods based on geometry and some other calculations, advancements in technology made available the presence of special motoring equipment, which can be placed in outer space to remotely monitor and measure the position of the sun.
The use of direct radar measurements to the sun (radar astronomy) have also made the determination of the AU more accurate.
A standard radar pulse of known speed is sent to the Sun, and the time with which it takes to return is measured, once this is recorded, the distance between the Earth and the Sun can be calculated using
distance = speed X time.
However, most of these means have to be corrected for parallax errors