Answer:
All of the above
Explanation:
The magnitude of the magnetic force on a current-carrying wire held in a magnetic is given by the equation 
Where B = Strength of the magnetic field
I = The current carried by the wire
l = length of the wire in the magnetic field
θ = Angle between the wire and the magnetic field
Based on the relationship written above, the magnitude of the magnetic force on the current - carrying wire in the magnetic field depends on the strength of the magnetic field (B), length of the wire(l), current in the wire (I).
All the options are correct.
Answer:
Hydraulic brake systems are used as the main braking system on almost all passenger vehicles and light trucks. Hydraulic brakes use brake fluid to transmit force when the brakes are applied.
Explanation:
Answer:
Radius, 
Explanation:
It is given that,
Magnetic field, B = 0.275 T
Kinetic energy of the electron, 
Kinetic energy is given by :


v = 1037749.04 m/s
The centripetal force is balanced by the magnetic force as :




So, the radius of the circular path is
. Hence, this is the required solution.
Answer:
2.4 m/s
Explanation:
Momentum is conserved.
m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂
(0.08 kg)(0.5 m/s) + (0.05 kg)(0 m/s) = (0.08 kg)(-0.1 m/s) + (0.05 kg) v
0.04 kg m/s = -0.08 kg m/s + (0.05 kg) v
0.12 kg m/s = (0.05 kg) v
v = 2.4 m/s