Answer:
A) Emin = eV
B) Vo = (E_light - Φ) ÷ e
Explanation:
A)
Energy of electron is the product of electron charge and the applied potential difference.
The energy of an electron in this electric field with potential difference V will be eV. Since this is the least energy that the electron must reach to break out, then the minimum energy required by this electron will be;
Emin = eV
B)
The maximum stopping potential energy is eVo,
The energy of the electron due to the light is E_light.
If the minimum energy electron must posses is Φ, then the minimum energy electron must have to reach the detectors will be equal to the energy of the light minus the maximum stopping potential energy
Φ = E_light - eVo
Therefore,
eVo = E_light - Φ
Vo = (E_light - Φ) ÷ e
False because the Ionsophere lies between the Mesosphere and the Theromsphere. If can can you give me brainliest :o ?
As you mentioned, we will use <span>Equipartition Theorem.
</span><span>H2 has 5 degrees of freedom; 3 translations and 2 rotation
</span>Therefore:
Internal energy = (5/2) nRT
You just substitute in the equation with the values of R and T and calculate the internal energy as follows:
Internal energy = (5/2) x 2 x <span>8.314 x 308 = 32.0089 x 10^3 J</span>
I think it’s 15cm
Might be 7cm
The heat from the wick melts the wax which gets absorbed in the wick and then gets burnt (which is really oxidation) to produce heat energy<span> as well as light </span>energy. The energy<span> transforms from chemical </span>energy<span> to heat and light </span>energy<span>. Because when the </span>candle burns<span> a chemical reaction </span>occurs<span>, and produces heat and light.
</span>