If no other forces act on the object, according to Newton’s first law, the spacecraft will continue moving at a constant velocity, assuming that a planet or something with large mass doesn’t cross its path. Forces are not required to continue the motion of an object on a frictionless plane at a constant rate.
The correct answer to the question is : D) 352.6 m/s.
CALCULATION :
As per the question, the temperature is increased from 30 degree celsius to 36 degree celsius.
We are asked to calculate the velocity of sound at 36 degree celsius.
Velocity of sound is dependent on temperature. More is the temperature, more is velocity of sound.
The velocity at this temperature is calculated as -
V = 331 + 0.6T m/s
= 331 + 0.6 × 36 m/s
= 331 + 21.6 m/s
= 352.6 m/s.
Here, T denotes the temperature of the surrounding.
Hence, velocity of the sound will be 352.6 m/s.
Answer:
False
Explanation:
The steel ball and the wooden ball do not have the same force acting on them because their masses are different. But, they have the same acceleration which is the acceleration due to gravity g = 9.8 m/s².
Using the equation of motion under freefall, s = ut +1/2gt². Since u = 0,
s = 1/2gt² ⇒ t = √(2s/g)
Since. s = height is the same for both objects, they land at the same time neglecting air resistance.
The electric force between two charged particles can be increased by decreasing the distance between the two particles.
<h3>How to increase electric force between two charged particles.</h3>
The technique of decreasing the separation distance between objects increases the force of attraction or repulsion between the objects. while
increasing the separation distance between objects decreases the force of attraction or repulsion between the objects.
Read more on Electric Force:
brainly.com/question/17692887
#SPJ1
Answer:
Explanation:
We can use the conservation of the angular momentum.


Now the Inertia is I(professor_stool) plus mR², that is the momentum inertia of a hoop about central axis.
So we will have:

Now, we just need to solve it for ω.

I hope it helps you!