Answer:
In the clarification portion elsewhere here, the definition of the concern is mentioned.
Explanation:
So like optical telescopes capture light waves, introduce it to concentrate, enhance it, as well as make it usable through different instruments via study, so radio telescopes accumulate weak signal light waves, introduce that one to focus, enhance it, as well as make this information available during research. To research naturally produced radio illumination from stars, galaxies, dark matter, as well as other natural phenomena, we utilize telescopes.
Optical telescopes detect space-borne visible light. There are some drawbacks of optical telescopes mostly on the surface:
- Mostly at night would they have been seen.
- Unless the weather gets cloudy, bad, or gloomy, they shouldn't be seen.
Although radio telescopes monitor space-coming radio waves. Those other telescopes, when they are already typically very massive as well as costly, have such an improvement surrounded by optical telescopes. They should be included in poor weather and, when they travel through the surrounding air, the radio waves aren't obscured by clouds. Throughout the afternoon and also some at night, radio telescopes are sometimes used.
Answer:
not clear pic...but it's definitely not A)
Answer:
“Insanity is relative. It depends on who has who locked in what cage.” R.D. Laing: “Insanity – a perfectly rational adjustment to an insane world.” Nora Ephron: “Insane people are always sure that they are fine. It is only the sane people who are willing to admit that they are crazy.”Sep 20, 2012
Explanation:
Answer:
P = 5sin(880πt)
Explanation:
We write the pressure in the form P = Asin2πft where A = amplitude of pressure, f = frequency of vibration and t = time.
Now, striking the middle-A tuning fork with a force that produces a maximum pressure of 5 pascals implies A = 5 Pa.
Also, the frequency of vibration is 440 hertz. So, f = 440Hz
Thus, P = Asin2πft
P = 5sin2π(440)t
P = 5sin(880πt)
Answer:
The given statement is false.
Explanation:
For any negative vector

The magnitude of the vector is given by

As we know that square root of any quantity cannot be negative thus we conclude that the right hand term in the above expression cannot be negative hence we conclude that magnitude of any vector cannot be negative.