Increasing the concentration of a substance will increase the rate of reaction because in a conc substance the particles are more clustered together and this causes more effective collisions thus increasing the rate of reaction and when the substance isn't concentrated the particles aren't really close and this reduces the rate of reaction because alot of collisions can't be made compared to that of the concentrated substance
Taking into account the definition of calorimetry, 0.0185 moles of water are required.
<h3>Calorimetry</h3>
Calorimetry is the measurement and calculation of the amounts of heat exchanged by a body or a system.
Sensible heat is defined as the amount of heat that a body absorbs or releases without any changes in its physical state (phase change).
So, the equation that allows to calculate heat exchanges is:
Q = c× m× ΔT
where Q is the heat exchanged by a body of mass m, made up of a specific heat substance c and where ΔT is the temperature variation.
<h3>Mass of water required</h3>
In this case, you know:
Heat= 92.048 kJ
Mass of water = ?
Initial temperature of water= 34 ºC
Final temperature of water= 100 ºC
Specific heat of water = 4.186
Replacing in the expression to calculate heat exchanges:
92.048 kJ = 4.186 × m× (100 °C -34 °C)
92.048 kJ = 4.186 × m× 66 °C
m= 92.048 kJ ÷ (4.186 × 66 °C)
<u><em>m= 0.333 grams</em></u>
<h3>Moles of water required</h3>
Being the molar mass of water 18 , that is, the amount of mass that a substance contains in one mole, the moles of water required can be calculated as:
<span>A substance that can be separated into two or more substances only by a chemical change is </span><span>known as a </span><span>heterogeneous</span><span> mixture</span>
Elements in same group have same chemical properties due to same number of valence electrons in valence shell.
Explanation:
Chemical properties are those properties which results in transforming the starting material to a entirely new substance with different chemical and physical properties. This transformation takes place after a chemical reaction. Hence, the chemical reactivity of some atoms is greater than the others and vice versa.
In periodic table it is found that the elements in the same group have almost same chemical behaviour. For example, elements of group 8 (or 18) are almost non reactive, while that of group 1 and group 7 are found very reactive and show same chemical behaviour like group 1 elements forms +1 ion while group 7 elements form -1 ions as the group 1 metals have single valence shell electron which upon losing allow the atom to attain stability and the halogen having 7 electrons in valence shell upon accepting one electron allow them to attain a octet of stability respectively.