<h2>Potential energy lost by 10 N rock will be greater</h2>
Explanation:
Two rocks of 5N and 10N falls from the same height . Thus they will loose the potential energy.
The potential energy lost = mass x acceleration due to gravity x height
The potential energy lost by first 5 N rock = 5 h
Because weight of rock m g = 5 N
Similarly , the potential energy lost by 10 N Rock = 10 h
here weight of rock m g = 10 N
Thus comparing these two , the potential energy lost by 10 N rock is greater than that of 5 N rock .
Answer:
The separation between the two lowest levels = 
The values of n where the energy of molecule reaches 1/2 kT at 300K = 
The separation at this level = 1.8 *
J
Explanation:
Knowing the formula
En = 
Mass of oxygen molecule
m (O2) = 32 amu * 
So the energy diference between the two lowest levels:
E2 - E1 = 
E2 - E1 = 
Now we should find n where the energy of molecule reaches 1/2 kT
En =
= 
= 


by the end is necessary to calculate the separation of the level
En - En-1 = 
= 1.8 *
J
Answer:i dont remember
Explanation: ?>>> confused
The best scenario to describe the doppler effect would be listening to the siren of a passing ambulance or fire truck
then it is coming towards you, the pitch is higher, it gets higher as it approaches and peaks as it gets right in front of you. then it drop at once when it passes you and continues to drop till it fades away. this is a classic descrption of the doppler effect