Answer:
75 rad/s
Explanation:
The angular acceleration is the time rate of change of angular velocity. It is given by the formula:
α(t) = d/dt[ω(t)]
Hence: ω(t) = ∫a(t) dt
Also, angular velocity is the time rate of change of displacement. It is given by:
ω(t) = d/dt[θ(t)]
θ(t) = ∫w(t) dt
θ(t) = ∫∫α(t) dtdt
Given that: α (t) = (6.0 rad/s4)t² = 6t² rad/s⁴. Hence:
θ(t) = ∫∫α(t) dtdt
θ(t) = ∫∫6t² dtdt =∫[∫6t² dt]dt
θ(t) = ∫[2t³]dt = t⁴/2 rad
θ(t) = t⁴/2 rad
At θ(t) = 10 rev = (10 * 2π) rad = 20π rad, we can find t:
20π = t⁴/2
40π = t⁴
t = ⁴√40π
t = 3.348 s
ω(t) = ∫α(t) dt = ∫6t² dt = 2t³
ω(t) = 2t³
ω(3.348) = 2(3.348)³ = 75 rad/s
Answer:
The shortest transverse distance between a maximum and a minimum of the wave is 0.1638 m.
Explanation:
Given that,
Amplitude = 0.08190 m
Frequency = 2.29 Hz
Wavelength = 1.87 m
(a). We need to calculate the shortest transverse distance between a maximum and a minimum of the wave
Using formula of distance

Where, d = distance
A = amplitude
Put the value into the formula


Hence, The shortest transverse distance between a maximum and a minimum of the wave is 0.1638 m.
Answer:
15.88°C I am not 100% sure this is right but I am 98% sure this IS right
The best and most correct answer among the choices provided by your question is the fourth option or letter D. Trade winds blow towards the equator because t<span>he Equator receives the most heat energy.
</span>The surface air that flows from these subtropical high-pressure belts toward the Equator is deflected toward the west in both hemispheres by the Coriolis effect. These winds blow<span> predominantly from the northeast in the Northern Hemisphere and from the southeast in the Southern Hemisphere.
I hope my answer has come to your help. Thank you for posting your question here in Brainly.
</span>