Here in all such collision type question we can use momentum conservation as we can see that there is no external force on this system

as we know that




now from above equation we have



so the speed of combined system is 2 m/s
Explanation:
It is given that,
Mass of the rim of wheel, m₁ = 7 kg
Mass of one spoke, m₂ = 1.2 kg
Diameter of the wagon, d = 0.5 m
Radius of the wagon, r = 0.25 m
Let I is the the moment of inertia of the wagon wheel for rotation about its axis.
We know that the moment of inertia of the ring is given by :


The moment of inertia of the rod about one end is given by :

l = r


For 6 spokes, 
So, the net moment of inertia of the wagon is :


So, the moment of inertia of the wagon wheel for rotation about its axis is
. Hence, this is the required solution.
Answer:
1.414
Explanation:
Snell's law states:
n₁ sin θ₁ = n₂ sin θ₂
where n is the index of refraction and θ is the angle of incidence (relative to the normal).
The index of refraction of air is approximately 1. So:
1 sin 45° = n sin 30°
n = sin 45° / sin 30°
n = 1.414
Round as needed.
<em>A clamp-type measuring instrument operates on the principle of; </em>
A. induction