Answer:
θ_p = 53.0º
Explanation:
For reflection polarization occurs when a beam is reflected at the interface between two means, the polarization in total when the angle between the reflected and the transmitted beam is 90º
Let's write the transmission equation
n1 sin θ₁ = ne sin θ₂
The angle to normal (vertcal) is
180 = θ2 + 90 + θ_p
θ₂ = 90 - θ_p
Where θ₂ is the angle of the transmitted ray θ_p is the angle of the reflected polarized ray
We replace
n1 sin θ_p = n2 sin (90 - θ_p)
Let's use the trigonometry relationship
Sin (90- θ_p) = sin 90 cos θ_p - cos 90 sin θ_p = cos θ_p
In the law of reflection incident angle equals reflected angle,
ni sin θ_p = ns cos θ_p
n₂ / n₁ = sin θ_p / cos θ_p
n₂ / n₁ = tan θ_p
θ_p = tan⁻¹ (n₂ / n₁)
Now we can calculate it
The refractive index of air is 1 (n1 = 1) the refractive index of seawater varies between 1.33 and 1.40 depending on the amount of salts dissolved in the water
n₂ = 1.33
θ_p = tan⁻¹ (1.33 / 1)
θ_p = 53.0º
n₂ = 1.40
θ_p = tan⁻¹ (1.40 / 1)
Tep = 54.5º
Answer:
H = 3.9 m
Explanation:
mass (m) = 48 kg
initial velocity (initial speed) (U) = 8.9 m/s
final velocity (V) = 1.6 m/s
acceleration due to gravity (g) = 9.8 m/s^{2}
find the height she raised her self to as she crosses the bar (H)
from energy conservation, the change in kinetic energy = change in potential energy
0.5m(V^{2} - [test]U^{2}[/tex]) = mg(H-h)
where h = initial height = 0 since she was on the ground
the equation becomes
0.5m(V^{2} - [test]U^{2}[/tex]) = mgH
0.5 x 48 x (1.6^{2} - [test]8.9^{2}[/tex]) = 48 x 9.8 x H
-1839.6 = 470.4 H (the negative sign indicates a decrease in kinetic energy so we would not be making use of it further)
H = 3.9 m
In an extremely simplified explanation,
What happens is that the steam (heat) that is generated by the burning of coal is used to rotate the motor of the steam engine.
Djdjdjddjddkjddiejrjrrjrjrkrkrkrjrjr