Answer:
The decrease is due to the bulge at the equator (putting more distance between the rest of the planet and the surface
Explanation:
Answer:
W=315 x 10⁵ J
Explanation:
Given that
F= 2.5 x 10⁵ N
d= 90 m
K.E.=5.4 x 10⁷ J
We know that work done by all force is equal to the change in kinetic energy
Lets take work done by catapult is W
W + F.d= K.E.
W= 5.4 x 10⁷ - 2.5 x 10⁵ x 90 J
W= (540 - 25 x 9) 10⁵ J
W=315 x 10⁵ J
Answer:
Frequency of oscillation, f = 4 Hz
time period, T = 0.25 s
Angular frequency, 
Given:
Time taken to make one oscillation, T = 0.25 s
Solution:
Frequency, f of oscillation is given as the reciprocal of time taken for one oscillation and is given by:
f = 
f = 
Frequency of oscillation, f = 4 Hz
The period of oscillation can be defined as the time taken by the suspended mass for completion of one oscillation.
Therefore, time period, T = 0.25 s
Angular frequency of oscillation is given by:



Answer:
Explanation:
extension in the spring = 40.4 - 31.8 = 8.6 cm = 8.6 x 10⁻² m .
kx = mg
k is spring constant , x is extension , m is mass
k x 8.6 x 10⁻² = 7.52 x 9.8
k = 856.93 N/m
= 857 x 10⁻³ KN /m
b ) Both side is pulled by force of 188 N .
Tension in spring = 188N
kx = T
856.93 x = 188
x = .219.38 m
= 21.938 cm
= 21.9 cm .
length of spring = 31.8 + 21.9
= 53.7 cm .
Answer:
K.E = 100 J
Final P.E = 100 J
Explanation:
The kinetic energy of any object can be given by the following formula:

where,
K.E = Kinetic Energy
m = mass of ball = 2 kg
v = speed of ball
Initially, v = 10 m/s. Therefore, the initial K.E is given as:

<u>K.E = 100 J</u>
Now, at the highest point the K.E of the ball becomes zero. because the ball stops for a moment at the highest point and its velocity becomes zero. So, from Law of Conservation of energy:
Initial K.E + Initial P.E = Final K.E + Final P.E
Initial P.E is also zero due to zero height initially.
K.E + 0 = 0 + Final P.E
<u>Final P.E = 100 J</u>