If dirt and grease were good conductors of electrical current, then we could make wire
out of dirt and grease instead of expensive copper. Sadly, they're not. So a coating of
dirt and grease on the wire can have a substantial impact on the connection, and can
even block the flow of current across the connection completely. Moreover, in the case
where the ends of the wires are to be soldered, solder does not adhere to dirty wire.
Answer:
Explanation:
Moment of inertia of a disc = 1/2 M R²
Since mass is same for both and radius are r and 2r, their moment of inertia can be in the ratio of 1: 4 . Let them be I and 4I . Angular speed are ω₀ and - ω₀ .
We shall apply law of conservation of angular momentum .
initial total angular momentum
I x ω₀ - 4I x ω₀ = - 3Iω₀
Let final common angular momentum be ω
total final angular momentum = ( I + 4I ) ω
Applying law of conservation of angular momentum
( I + 4I ) ω = - 3Iω₀
ω = - 3 / 5 ω₀ .
b )
Initial total rotational K E
= 1/2 I ω₀² + 1/2 4I ω₀²
= 1/2 x5I ω₀²
Final total rotational K E
= 1/2 ( I + 4I ) ( - 3 / 5 ω₀ )²
= 1/2 x 9 / 5 I ω₀²
= 9 / 10I ω₀²
change in rotational kinetic energy = 9 / 10I ω₀² - 1/2 x5I ω₀²
(9/10 - 5/2) xI ω₀²
=( .9 - 2.5 )I ω₀²
= - 1.6 I ω₀² Ans
s alluded to in the other answers, salt refers to any ionic compound that doesn't have “oxides” in it. Table salt is sodium chloride. Going down the periodic table, the first column contains lithium, sodium, potassium, rubidium, cesium, and francium. This group (alkali metals) of atoms (and their corresponding positive ions) gets larger in the order shown above. Therefore, their ionic bonds with chloride (or any nonmetal) gets smaller. The trend of their corresponding compounds is a decreasing hardness, decreasing melting point, decreasing boiling point, and decreasing thermal stability. These are the major periodic trends of these corresponding compounds. Other metal ions generally have higher positive charges on them. This makes the ionic bonds considerably larger and you can probably surmise most of their corresponding properties listed above. However, the details of their lattice structures may cause the overall trend to vary.
Answer:
20 m
Explanation:
From the equation of motion,
S = ut+1/2gt²................................. Equation 1
Where S = Height, u = initial velocity, t = time, g = acceleration due to gravity.
Note: Because the rocked is being dropped from a height, acceleration due to gravity is positive (g), and initial velocity (u) is negative
Given: t = 2.0 s, g = 10 m/s², u = 0 m/s (dropped from height)
Substituting into equation 1
S = 0(2) + 1/2(10)(2)²
S = 5(4)
S = 20 m
Hence the height of the the cliff above the pool is 20 m
Answer:
The helicopter was deformed and destroyed in the inelastic collision.
Explanation:
- When two object collide there exist two way of colliding: elastic collision and inelastic collision.
- Two terms are considered during the collision: kinetic energy and momentum.
- If both of these terms are conserved in any collision then there is no significant loss of property, this is called as elastic collision.
- If only momentum is conserved but kinetic energy is converted into other forms then it is inelastic collision. In inelastic collision, the energy is lost in the form of vibration, sound etc. causing the damage to colliding object.
- Hence the deformation of helicopter was due to inelastic collision.