Answer:
Theoretical yield of C6H10 = 3.2 g.
Explanation:
Defining Theoretical yield as the quantity of product obtained from the complete conversion of the limiting reactant in a chemical reaction. It can be expressed as grams or moles.
Equation of the reaction
C6H11OH --> C6H10 + H2O
Moles of C6H11OH:
Molar mass of C6H110H = (12*6) + (1*12) + 16
= 100 g/mol
Mass of C6H10 = 3.8 g
number of moles = mass/molar mass
=3.8/100
= 0.038 mol.
Using stoichoimetry, 1 moles of C6H110H was dehydrated to form 1 mole of C6H10 and 1 mole of water.
Therefore, 0.038 moles of C6H10 was produced.
Mass of C6H10 = molar mass * number of moles
Molar mass of C6H10 = (12*6) + (1*10)
= 82 g/mol.
Mass = 82 * 0.038
= 3.116 g of C6H10.
Theoretical yield of C6H10 = 3.2 g
Answer:
Explanation:
The missing image is attached below.
The objective of this question is to draw the major product formed from the diagram attached below.
From the diagram attached, we will see the reaction of a tertiary alkyl halide together with a weak nucleophile (ch3ch2oh) undergoing a nucleophilic substitution (SN₁) mechanism to yield a racemic mixture(i.e., compound that is not optically active but contains an equal amount of dextrorotatory and levorotatory stereoisomers) as a product.
Answer:
The four stages of technological design include identifying a need, designing and implementing a solution, and evaluating the solution.
I don't know what the options are, cause you didn't show them but, hope this helped.
A change in temperature or color are two signs that a chemical reaction has taken place.