Answer:
These are Diffraction Grating Questions.
Q1. To determine the width of the slit in micrometers (μm), we will need to use the expression for distance along the screen from the center maximum to the nth minimum on one side:
Given as
y = nDλ/w Eqn 1
where
w = width of slit
D = distance to screen
λ = wavelength of light
n = order number
Making x the subject of the formula gives,
w = nDλ/y
Given
y = 0.0149 m
D = 0.555 m
λ = 588 x 10-9 m
and n = 3
w = 6.6x10⁻⁵m
Hence, the width of the slit w, in micrometers (μm) = 66μm
Q2. To determine the linear distance Δx, between the ninth order maximum and the fifth order maximum on the screen
i.e we have to find the difference between distance along the screen (y₉-y₅) = Δx
Recall Eqn 1, y = nDλ/w
given, D = 27cm = 0.27m
λ = 632 x 10-9 m
w = 0.1mm = 1.0x10⁻⁴m
For the 9th order, n = 9,
y₉ = 9 x 0.27 x 632 x 10-9/ 1.0x10⁻⁴m = 0.015m
Similarly, for n = 5,
y₅ = 5x 0.27 x 632 x 10-9/ 1.0x10⁻⁴m = 0.0085m
Recall, Δx = (y₉-y₅) = 0.015 - 0.0085 = 0.0065m
Hence, the linear distance Δx between the ninth order maximum and the fifth order maximum on the screen = 6.5mm
Answer:
C.) The slinky particles move up and down
Explanation:
<u>Transverse Wave</u>-
<em>A wave that has a disturbance perpendicular to the wave motion</em>
<em></em>
<em>Hello! This is the correct answer! Have a blessed day! :)</em>
<em>If you are in K12, please review the lesson! :) It will give you some very helpful definitions! I hope this helped!</em>
<u />
Answer:
Q at the center of the distribution.
Explanation:
- The Gauss's law is the law that relates to the distribution of electrical charges to the resulting electrical field. It states that a flux of electricity outside the arabatory closed surface is proportional to the electricitical harg enclosed by the surface.
<span>The speed of longitudinal waves, S, in a thin rod = âšYoung modulus / density , where Y is in N/m^2.
So, S = âšYoung modulus/ density. Squaring both sides, we have, S^2 = Young Modulus/ density.
So, Young Modulus = S^2 * density; where S is the speed of the longitudinal wave.
Then Substiting into the eqn we have (5.1 *10^3)^2 * 2.7 * 10^3 = 26.01 * 10^6 * 2.7 *10^6 = 26.01 * 2.7 * 10^ (6+3) = 70.227 * 10 ^9</span>