Answer:
The nucleus (center) of the atom contains the protons (positively charged) and the neutrons (no charge).
Explanation:
The nucleus (center) of the atom contains the protons (positively charged) and the neutrons (no charge).
One can tell by looking at the titration curve of an acid and base whether the acid used is a strong acid or a weak acid. For a titration of a strong acid and a strong base, the pH at the equivalence point will be neutral, that is, pH 7. If the titration involves a weak acid and a strong base, the pH at the equivalence point will not be neutral, the solution will be basic at the equivalence point.
The first one is unbalanced, the photo below is proof.
By using the formula, mass = density x volume, we
calculate mass in grams
20.0 mL CH₃COOH x (1.05 g / mL) = 21.0
g CH₃COOH
To find the moles, molar mass of CH₃COOH = 60.05g/mol<span>
21.0 g </span>CH₃COOH x (1 mole CH₃COOH / 60.05 g CH₃COOH)
= 0.350 moles CH₃COOH
To find molarity,<span>
[</span>CH₃COOH] = moles CH₃COOH / L of solution = 0.350 /
1.40 = 0.250 M CH₃COOH<span>
When </span>CH₃COOH is dissolved in water, it produces
small and equal amounts of H₃O⁺+ and C₂H₃O₂⁻.
<span>
Molarity , </span>CH₃COOH<span> + H</span>₂O <==> H₃O⁺ + C₂H₃O₂⁻
<span>
<span>Initial 0.250 0 0 </span>
Change -x x x
Equilibrium 0.250-x x x
K</span>ₐ = [H₃O⁺][C₂H₃O₂⁻] / [HC₂H₃O₂] = (x)(x) /
(0.250-x) = 1.8 x 10⁻⁵
<span>Since K</span>ₐ is relatively small, we can neglect the -x
term after 0.250 to simplify
<span>x</span>² / 0.250 = 1.8 x 10⁻⁵
x² = 4.5 x 10⁻⁶
<span>
x = 2.1 x 10</span>⁻³<span> = [H</span>₃O⁺]
pH = -log [H₃O⁺] = -log (2.1 x 10⁻³) = 2.68
Atomic number = No. of proton = 1
so, your answer is 1