1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Eddi Din [679]
2 years ago
12

(b) The distance of mass from mass A if there is no gravitational force acted on C

Physics
1 answer:
shepuryov [24]2 years ago
7 0

Answer:

(a) The force, acting on object 'C' is approximately 2.66972 × 10⁻¹⁰ Newtons

(b) The distance of 'C' from 'A', in the direction particle 'B' if there is no  meters gravitational force acting on 'C' is appromimately 0.829 meters or 1.877 meters

Explanation:

The given parameters are;

The mass of particle, A, m₁ = 2 kg

The mass of particle, B, m₂ = 0.3 kg

The mass of particle, C, m₃ = 0.05 kg

The distance between particle 'A' and particle 'B', r₁ = 0.15 m

The distance between particle 'B' and particle 'C', r₂ = 0.05 m

(a) The gravitational force, 'F', is given as follows;

F =G \times \dfrac{m_{1} \times m_{2}}{r^{2}}

Where;

F = The force between the two masses

G = The gravitation constant = 6.67430 × 10⁻¹¹ N·m²/kg²

m₁ = The mass of object 1

m₂ = The mass of object 2

If 'C' is placed at 0.05 m from 'B', we have;

F₂₃ =  6.67430 × 10⁻¹¹ × 0.05 × 0.3/(0.05²) ≈ 4.00458 × 10⁻¹⁰

The gravitational force between force between particle 'B' and particle 'C', F₂₃ = 4.00458 × 10⁻¹⁰ N (towards the right)

F₁₃ =  6.67430 × 10⁻¹¹ × 0.05 × 2/(0.1²) ≈ × 10⁻¹⁰

The gravitational force between force between particle 'A' and particle 'B', F₁₃ = 6.6743 × 10⁻¹⁰ N (towards the left)

The force, 'F', acting on object 'C' = F₁₃ - F₂₃

F = (6.6743 - 4.00458) × 10⁻¹⁰ = 2.66972 × 10⁻¹⁰ N

The force, acting on object 'C' ≈ 2.66972 × 10⁻¹⁰ N

(b), When there is no gravitational force acting on 'C', let the distance of 'C' from 'A' = x

We have;

F₂₃ = F₁₂

F_{23} =G \times \dfrac{m_{1} \times m_{2}}{r_1^{2}} = F_{13} =G \times \dfrac{m_{1} \times m_{3}}{r_2^{2}}

By plugging in the values and removing like terms, we get;

\dfrac{0.3 \times 0.05}{(1.15 - x)^{2}}  = \dfrac{2 \times 0.05}{x^2}

(1.15 - x)² × 2 × 0.05 = 0.3 × 0.05 × x²

0.1·x² - 0.23·x + 1.3225 = 0.015·x²

0.1·x² - 0.23·x + 1.3225 - 0.015·x² = 0

0.085·x² - 0.23·x + 0.13225= 0

x = (0.23± √((-0.23)² - 4 × 0.085 × ( 0.13225)))/(2 × 0.085))

x ≈ 0.829, or x ≈ 1.877

Therefore, the distance of 'C' from 'A', if there is no gravitational force acting on 'C', x ≈ 0.829 m, or x = 1.877 m, in the direction of 'B'

You might be interested in
The clouds that occur at the highest altitude are usually
gogolik [260]
The answer is A. Cirrus clouds occur at the highest altitude.
5 0
3 years ago
Read 2 more answers
An 85-kg man plans to tow a 109 000-kg airplane along a runway by pulling horizontally on a cable attached to it. Suppose that h
Lelu [443]

Answer:

The greatest acceleration the man can give the airplane is 0.0059 m/s².

Explanation:

Given that,

Mass of man = 85 kg

Mass of airplane = 109000 kg

Distance = 9.08

Coefficient of static friction = 0.77

We need to calculate the greatest friction force

Using formula of friction

F=\mu mg

Where, m = mass of man

g = acceleration due to gravity

Put the value into the formula

F = 0.77\times85\times9.8

F= 641.41\ N

We need to calculate the acceleration

Using formula of newton's second law

F = ma

a=\dfrac{F}{m}

Put the value into the formula

a=\dfrac{ 641.41}{109000}

a=0.0059\ m/s^2

Hence, The greatest acceleration the man can give the airplane is 0.0059 m/s².

3 0
3 years ago
2. A 2.5 meter-long wave travels at 1 m/s towards a fixed boundary. After 2 seconds, how does the wave appear?
Elan Coil [88]

Answer:

Since incident wave and its reflected part in opposite phase superimpose on each other

So correct answer will be

Option B

Explanation:

Here we know that the wave reflection is done by rigid boundary

So when wave is reflected by the boundary then its phase is reversed by 180 degree

so the reflected wave is in reverse phase from the boundary

so we can superimpose the reflected part with incident wave to dine the resultant wave

So the phenomenon is given as follow

6 0
3 years ago
2. Why do you need eggs to make manynaise? (yo
anastassius [24]

Answer:

to make it fluffy

Explanation:

6 0
2 years ago
angela uses a force of 25 newtons to lift her grocery bag while doing 50 joules of work. how far did she lift the grocery bags
Evgen [1.6K]
We know that:
W=Fs
50J=25N*s
s=50J/25N
s=2m
5 0
3 years ago
Other questions:
  • Using the right-hand rule from your lessons, determine the directions of the electrical current and magnetic field of the electr
    10·1 answer
  • true or false? Heather and Matthew walk with an average velocity of .75 m/s eastward. If it takes them 25 min to walk to the par
    7·1 answer
  • A lead ball is dropped into a lake from a diving board 5m above the water . It hits the water with a certain velocity and then s
    14·1 answer
  • On flat ground, a 70-kg person requires about 300 W of metabolic power to walk at a steady pace of 5.0 km/h (1.4 m/s). Using the
    9·1 answer
  • An engineer is adding a heat sink to a motor to help absorb some of the heat produced by the motor. Which piece of metal would a
    11·2 answers
  • For a study to accurately reflect a target population behavior, it must use __________ measures.
    10·2 answers
  • Unpolarized light with an intensity of 432 W/m^2 passes through three polarizing filters in a row, each of which is rotated 30 d
    7·1 answer
  • you have been provided with an insulated wire , voltmeter or a battery with a charge of 10ohms, a bulb, a switch and a resistor
    14·1 answer
  • A jetliner is moving at a speed of 245m/s. The vertical component of the plane's velocity is 40.6 m/s. Determine the magnitude o
    11·1 answer
  • The magnitudes of the two displacement vectors are _____ and ______
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!