Answer: C
Frictional force
Explanation:
The description of the question above is an example of a circular motion.
For a car travelling in a curved path, the frictional force between the tyres and the road surface will provide the centripetal force.
Since the road is banked, and the cross section of the banked road is constructed like a ramp. The car drives transversely to the slope of the ramp, so that the wheels of one side of the car are lower than the wheels on the other side of the car, for cornering the banked road, the car will not rely only on the frictional force.
Therefore, the correct answer is option C - the frictional force.
The first thing you should know for this case is that density is defined as the quotient between mass and volume:
D = M / V
In addition, you should keep in mind the following conversion:
1Kg = 1000g
Substituting the values we have:
D = (23.0 * 1000) / (2920) = 7.88 g / cm ^ 3
answer
the density of the iron plate is 7.88 g / cm ^ 3
Answer:
The total Mechanical energy will be zero
Explanation: Escape velocity is the velocity required by a free object in order to overcome the impact of the force of gravity. The total mechanical energy of an object is the total energy possessed by an object which includes its kinectic and potential energy.
since the object is moving at an escape velocity which is 11.2m/s the object will be assumed to be weightless
Etotal = kinetic energy + potential energy
kinetic energy= 1/2*M*V*V
Potential energy=MGH
Etotal=1/2*0*11.2*11.2+0*0*0
Etotal=0+0
Etotal=0.
Answer:
The given statement is false.
Explanation:
The spherical mirrors are the mirror that are a part of a sphere. Concave and convex mirrors are two types of spherical mirrors.
A concave mirror always forms real and inverted image. A convex mirror forms real and virtual images.
For concave mirror, the value of magnification is less that 1. Also, the focal length is negative for concave mirrors.
So, the given statement is false as a concave mirror always forms a real and inverted image. Hence, this is the required solution.