<h3><u>Answer;</u></h3>
C.The oxidation state of all the atoms should change.
<h3><u>Explanation;</u></h3>
- A redox reaction which is oxidation-reduction reaction is a type of chemical reaction that involves a transfer of electrons between two species.
- An oxidation-reduction reaction is any chemical reaction in which the oxidation number of a molecule, atom, or ion changes by gaining or losing an electron.
- In a redox reaction, the total number of electrons lost by the reducing agent must be equal to the number of electrons gained by the oxidizing agent.
1.65g MgO = 1g Mg
1.65 - 1 = 0.65 g of O in MgO
solve it using proportion:
1g Mg / 0.65g O = x (g) Mg / 16g O
or 1 / 0.65 = x / 16
24.6 g is the answer.
if 1 gram of oxygen requires 1.65 grams of Mg
then 16 grams of oxygen will require 16 ( 1.65) or 26.4 grams.
Atomic number should be the answer
<span> red litmus paper turns </span>blue <span>under basic or alkaline conditions, with the color change occurring over the pH range 4.5–8.3 at 25 °C (77 °F). Neutral litmus paper is purple.</span>
Equilibrium expression is ![Keq = \frac{[H3O+][HCO3^-]}{[H2CO3]}\\](https://tex.z-dn.net/?f=Keq%20%3D%20%5Cfrac%7B%5BH3O%2B%5D%5BHCO3%5E-%5D%7D%7B%5BH2CO3%5D%7D%5C%5C)
<u>Explanation:</u>
Equilibrium expression is denoted by Keq.
Keq is the equilibrium constant that is defined as the ratio of concentration of products to the concentration of reactants each raised to the power its stoichiometric coefficients.
Example -
aA + bB = cC + dD
So, Keq = conc of product/ conc of reactant
![Keq = \frac{[C]^c [D]^d}{[A]^a [B]^b}](https://tex.z-dn.net/?f=Keq%20%3D%20%5Cfrac%7B%5BC%5D%5Ec%20%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%20%5BB%5D%5Eb%7D)
So from the equation, H₂CO₃+H₂O = H₃O+HCO₃⁻¹
![Keq = \frac{[H3O^+]^1 [HCO3^-]^1}{[H2CO3]^1 [H2O]^1}](https://tex.z-dn.net/?f=Keq%20%3D%20%5Cfrac%7B%5BH3O%5E%2B%5D%5E1%20%5BHCO3%5E-%5D%5E1%7D%7B%5BH2CO3%5D%5E1%20%5BH2O%5D%5E1%7D)
The concentration of pure solid and liquid is considered as 1. Therefore, concentration of H2O is 1.
Thus,
![Keq = \frac{[H3O+][HCO3^-]}{[H2CO3]}\\](https://tex.z-dn.net/?f=Keq%20%3D%20%5Cfrac%7B%5BH3O%2B%5D%5BHCO3%5E-%5D%7D%7B%5BH2CO3%5D%7D%5C%5C)
Therefore, Equilibrium expression is ![Keq = \frac{[H3O+][HCO3^-]}{[H2CO3]}\\](https://tex.z-dn.net/?f=Keq%20%3D%20%5Cfrac%7B%5BH3O%2B%5D%5BHCO3%5E-%5D%7D%7B%5BH2CO3%5D%7D%5C%5C)