For a photographer that wishes to determine the color of light that he can use in a dark room that will not expose the films he is processing, having used a Blue Incandescent bulb, he should proceed to use a Red Incandescent bulb for the next trial.
The photographer in question is performing an experiment. For these kinds of experiments it is important to identify the variables present, which can be of three kinds:
- Control variables
- Dependent variables
- Independent variables
For this experiment, the dependent variable is the exposure of the light onto the films, given that this is what we wish to measure. The independent variable will be the color of the light being used which is what will affect the dependent variable.
The remaining variable must be the control variable. Unlike the previous variables, we can have more than one of these. The control variable is there to make sure that only the dependent variable is affecting the outcome. We do this by keeping the control variable the same through each trial, which is why the photographer should not change the type of bulb in the second experiment, changing only the color of the light.
To learn more visit:
brainly.com/question/1549017?referrer=searchResults
Answer:
A) True. Voltmeters measure voltages
C) True. They are placed in parallel
E) True ammeters are used to measure current
Explanation:
The devices for voltage measurement are the voltmeter and ammeter
Voltmeters have very high intense resistance and are placed in parallel
The ammeters have very small resist and are placed in series
Based on this establishment, let's analyze the statements
A) True. Voltmeters measure voltages
B) False has high intense resistance
C) True. They are placed in parallel
D) False ammeters are placed in series
E) True ammeters are used to measure current
F) False ammeters have a low internal resistance
Subtract all numbers to your answer
Answer:
I = 0.44 A
Explanation:
The magnetic force on a conductor is given by the expression
F = I L x B
Where bold letters indicate vectors, I is the current, L is the vector in the direction of the current, and B is the magnetic field
Since the force is maximum, the wire must be perpendicular to the magnetic field, therefore
F = I L B sin 90
I = F / L B
Let's calculate
I = 1.2 / 1.5 1.8
I = 0.44 A