Answer: (a) The magnitude of its temperature change in degrees Celsius is .
(b) The magnitude of the temperature change (change in T = 15.1 K) in degrees Fahrenheit is .
Explanation:
(a) Expression for change in temperature is as follows.
= 15.1 K
=
=
=
Therefore, the magnitude of its temperature change in degrees Celsius is .
(b) Change in temperature from Celsius to Fahrenheit is as follows.
F = 1.8C + 32
C =
Since, K = C + 273
or,
= 1.8 (15.1)
=
or, =
Thus, we can conclude that the magnitude of the temperature change (change in T = 15.1 K) in degrees Fahrenheit is .
Gamma rays, X-rays, most ultraviolet rays, and some infrared are absorbed by the atmosphere but do not reach the Earth's surface
Answer:
.
Explanation:
Let denote the absolute temperature of this object.
Calculate the value of before and after heating:
.
.
By the Stefan-Boltzmann Law, the energy that this object emits (over all frequencies) would be proportional to .
Ratio between the absolute temperature of this object before and after heating:
.
Therefore, by the Stefan-Boltzmann Law, the ratio between the energy that this object emits before and after heating would be:
.
The unmagnetized pieces of iron would be randomly pointing to directions, this is true because although influenced with the magnetic domain, the direction of the unmagnetized iron field of attraction is not uniform or does not have preferred direction.