The solution for the problem is:
Constant speed means Fnet = 0.
Let m = mass of wood block and Θ = angle of ramp; then if µk = 0.35 …
The computation would be:
Fnet = 0 = mg (sin Θ) - (µk) (mg) (cos Θ)
mg (sin Θ) = µk (mg) (cos Θ)
µk = tan Θ
Θ = arctan(µk)
= arctan (0.35)
≈ 19.3°
Answer:
W = 0 J
Explanation:
The amount of work done by gas at constant pressure is given by the following formula:

where,
W = Work done by the gas
P = Pressure of the gas
ΔV = Change in the volume of the gas
Since the volume of the gas is constant. Therefore, there is no change in the volume of the gas:

<u>W = 0 J</u>
Answer:
Δ L = 2.57 x 10⁻⁵ m
Explanation:
given,
cross sectional area = 1.6 m²
Mass of column = 26600 Kg
Elastic modulus, E = 5 x 10¹⁰ N/m²
height = 7.9 m
Weight of the column = 26600 x 9.8
= 260680 N
we know,
Young's modulus=
stress = 
= 
= 162925
strain = 
now,



Δ L = 2.57 x 10⁻⁵ m
The column is shortened by Δ L = 2.57 x 10⁻⁵ m