Answer:
= 97.44 Liters at S.T.P
Explanation:
The reaction between Iron (iii) oxide and Carbon monoxide is given by the equation;
Fe2O3(s)+ 3CO(g) → 3CO2(g) + 2Fe(s)
From the reaction when the reactants react, 2 moles of Fe and 3 moles of CO2 are produced.
Therefore; Mole ratio of Iron : Carbon dioxide is 2:3
Thus; Moles of Carbon dioxide = (2.9/2)×3
= 4.35 moles
But; 1 mole of CO2 at s.t.p occupies 22.4 liters
Therefore;
Mass of CO2 = 22.4 × 4.35 Moles
= 97.44 L
Answer:
a. Cyclohexanone
Explanation:
The principle of IR technique is based on the <u>vibration of the bonds</u> by using the energy that is in this region of the electromagnetic spectrum. For each bond, there is <em>a specific energy that generates a specific vibration</em>. In this case, you want to study the vibration that is given in the carbonyl group C=O. Which is located around 1700 cm-1.
Now, we must remember that the <u>lower the wavenumber we will have less energy</u>. So, what we should look for in these molecules, is a carbonyl group in which less energy is needed to vibrate since we look for the molecule with a smaller wavenumber.
If we look at the structure of all the molecules we will find that in the last three we have <u>heteroatoms</u> (atoms different to carbon I hydrogen) on the right side of the carbonyl group. These atoms allow the production of <u>resonance structures</u> which makes the molecule more stable. If the molecule is more stable we will need more energy to make it vibrate and therefore greater wavenumbers.
The molecule that fulfills this condition is the <u>cyclohexanone.</u>
See figure 1
I hope it helps!
3.6 x 10^-4
I am writing this sentence because the answer does not reach the 20 character limit. Thank you have nice day! :D Cx :P
Answer:
So for your question, the Periodic Table tells us that sodium has an Atomic Number of 11, so there are 11 protons and 11 electrons. The Periodic Table tells us that sodium has an Atomic Mass of ≈23. So there are 23 - 11 = 12 neutrons.
Explanation:
Answer:
The final dilution is 1:400
Explanation:
Let's analyze what we are told: we have an initial 1:5 dilution of protein lysate. This means that the initial solution (stock solution) was diluted 5 times. Then, from this dilution the student prepared another dilution taking 2 mL of the first dilution in 8 mL of water. This is the same as saying we took 1 mL of first dilution in 4 mL of water (the ratio is the same), so we now have a second 1:4 dilution of the first dilution (1:5). Finally, the student made a third 1:20 dilution, this means that the second dilution was further diluted 20 times.
So, to calculate the final dilution of protein lysate, we have to multiply all the dilution factors of every dilution prepared: in this case we have a final dilution of 1:20, this means we have a factor dilution of 20. But it was previously diluted 4 times, so we have a factor dilution of 20×4 = 80. However, this dilution was also previously diluted 5 times, so the new dilution factor is 80 × 5 = 400
This means that the final dilution of the compound was diluted a total of 400 times compared to the initial concentration of stock solution.