The most accurately represented John Dalton's model of the atom is: C. a tiny, solid sphere with a predictable mass for a given element
<h3>Further explanation</h3>
The development of atomic theory starts from the first term conveyed by Greek scientists who suggested that every substance has the smallest particles so that the word atomos appears, which means it cannot be divided. So, John Dalton, a British scientist put forward the hypothesis about atoms, among others:
- 1. The elements are composed of atoms which are small particles which cannot be subdivided
- 2. Atoms that make up the same element have the same properties, mass, and size, while for different elements, the properties are also different
- 3. Compounds are composed of two or more atoms in a fixed ratio
- 4. In chemical reactions, atoms after and before a reaction cannot be destroyed, only separation and reassembly occur
Point 3 shows the relationship with The Law of Constant Composition of Proust so that further research on atoms is more developed
Dalton's hypothesis is described as a solid sphere like a very small shot put ball or a bowling ball based on Dalton's hobby in bowling
<h3>Learn more</h3>
Bohr's model of the atom
brainly.com/question/1625635
Rutherford performed the gold foil experiment
brainly.com/question/1859083
The part of an atom that is mostly empty space
brainly.com/question/4089014
Keywords: atom, Dalton, a solid sphere, The Law of Constant Composition
Answer:
1) Constructive Interference
2) Hits a surface and bounces back
3) Antinodes
I don’t see any questions
Answer:
<em> ionic equation : </em>3Fe(2+)(aq) + 3SO4(2-)(aq)+ 6Na(+)(aq) + 2PO4 (3-) (aq) → Fe3(PO4)2(s)+ 6Na(+) + 3SO4(2-)(aq)
<em> net ionic equation: </em>3Fe(2+)(aq) + 2PO4 (3-)(aq) → Fe3(PO4)2(s)
Explanation:
The balanced equation is
3FeSO4(aq)+ 2Na3PO4(aq) → Fe3(PO4)2(s)+ 3Na2SO4(aq)
<em>Ionic equations: </em>Start with a balanced molecular equation. Break all soluble strong electrolytes (compounds with (aq) beside them) into their ions
. Indicate the correct formula and charge of each ion. Indicate the correct number of each ion
. Write (aq) after each ion
.Bring down all compounds with (s), (l), or (g) unchanged. The coefficents are given by the number of moles in the original equation
3Fe(2+)(aq) + 3SO4(2-)(aq)+ 6Na(+)(aq) + 2PO4 (3-) (aq) → Fe3(PO4)2(s)+ 6Na(+) + 3SO4(2-)(aq)
<em>Net ionic equations: </em>Write the balanced molecular equation. Write the balanced complete ionic equation. Cross out the spectator ions, it means the repeated ions that are present. Write the "leftovers" as the net ionic equation.
3Fe(2+)(aq) + 2PO4 (3-)(aq) → Fe3(PO4)2(s)
I believe the answer is <span>can be elements or compounds
In this case, elements in the decomposition reaction is the substance that cannot be separated into simpler substances.
Compounds, technically act as a reactant in the decomposition reaction, but since the reaction breakdown one substance into two or more, sometimes it exists in the product.</span>