Answer:
The period of a wave is the time for a particle on a medium to make one complete vibrational cycle. Period, being a time, is measured in units of time such as seconds, hours, days or years. The period of orbit for the Earth around the Sun is approximately 365 days; it takes 365 days for the Earth to complete a cycle.
Earth's magnetic field, also known as the geomagnetic field, is the magnetic field that extends from the Earth's interior out into space, where it interacts with the solar wind, a stream of charged particles emanating from the Sun.
Answer:
Explanation:
When the number of slits increases, the intensity of fringes increases.
So, the fringes appear to be more bright.
As we know that the fringe width is inversely proportional to the number of slits, so as the number of slits increases, the fringe width decreases, hence the fringes are narrower, bright and close together.
Explanation:
period of pendulum = time taken for 1 oscillation = time taken for 1 complete back and forth vibration
q1 ans is given in question its 1.5 sec
q2 ans is 1.5 sec longer than 1 sec period
Answer: 0.53m
Explanation:
According to the equation of motion v²= v₀²+2as
Since the body is launched upward, the final velocity at the maximum height will be "zero" since the body will momentarily be at rest at the maximum height i.e v = 0
Initial velocity given (v₀) = 3.25 m/s
The body is also under the influence of gravity but the acceleration due to gravity will be negative being an upward force (a = -g) and the distance (s) will serve as our maximum height (h)
The equation of motion will.now become
V = v₀² -2gh
Where v = 0 v₀ = 3.25m/s g = 10m/s h = ?
0 = 3.25² - 2(10)h
0 = 10.56 - 20h
-10.56 = -20h
h = 10.56/20
h = 0.53m
Therefore, the maximum height, h (in meters), above the launch point that the basketball will achieve is 0.53m