1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
adoni [48]
3 years ago
13

PLEASE ILL GIVE BRAINLIST Which term describes the high point of a transverse wave?

Physics
1 answer:
Pani-rosa [81]3 years ago
6 0

Answer:

I belive that the answer is the A

You might be interested in
Suppose the coefficient of kinetic friction between mA and the plane in the figure(Figure 1) is μk = 0.15, and that mA=mB=2.7kg.
luda_lava [24]
A ) 
T = mB g + mB a
T + mA a - mA g sin 35° = (Mi) mA g cos 35°
------------------------------------------------------------
T = 2.7 · 9.81  + 2.7 a
T = 26.487 + 2.7 a
26.487 + 2.7 a + 2.7 a - 2.7 · 9.81 · 0.574 = 0.15 · 2.7 · 9.81 · 0.819
5.4 a + 26.487 - 15.2023 = 3.2539
5.4 a = 8.0296
a = 1.487 ≈ 1.5 m/s²
B )
T = 2,7 · 9.81 = 26.487 
26.487 - 15.2035 = (Mi) · 2.7 · 9.81 · 0.819
11.2835 = (Mi) · 21.69
(Mi) = 11.2835 : 21.69 = 0.52
4 0
3 years ago
Plz help will give brainliest and 85 points and u can answer one at a time if u want
Ksju [112]
E) The number of moles of the helium of the balloon can be found by using the ideal gas law, which states:
pV=nRT
where p is the gas pressure, V is the gas volume, n is the number of moles, R is the gas constant and T the gas temperature. Since we know p,V and T of the gas, we can find the number of moles n by re-arranging the equation:
n= \frac{pV}{RT}

F) The car uses an internal combustion engine. In an internal combustion engine, the fuel (gasoline) burns releasing heat, which moves the pistons of the engine. The motion of the pistons is then converted into motion of the wheels of the car. 
The second law of thermodynamics states that the entropy of an isolated system can never decrease. If we take the engine as an isolated system, the this law applied also to it. In fact, at the beginning the engine containes fuel, which has a certain degree of "order" (entropy). When the fuel burns, the chemical bonds of the fuel are converted into heat, which has a higher degree of "disorder" (=more entropy) than the initial state. 

G1) The ice cubes in the drink undergo melting: they go from solid state into liquid state (water).
G2) Since the temperature of the ice cubes is lower than the temperature of the surrounding liquid drink, the drink releases heat to the ice cubes. This heat makes the molecules of the ice cubes to vibrate faster and faster, eventually breaking the bonds between the molecules. When this occurs, the ice cubes start melting.
G3) If the drink continues to heat, it will undergo evaporation, which is the transition between the liquid state and the gas state. This transition occurs when the energy given to the molecules of the drink is large enough to remove the intermolecular forces between the molecules of the liquid, allowing them to escape from each other.

H) Entropy is the amount of thermal energy of a system (per unit temperature) which cannot be used to do work. In practise, the entropy of a system gives a measure of the degree of "disorder" of a system. When the ice cubes melt, the entropy of the system (the ice cubes) increases, because they move from a state with higher degree of "order" (the solid state) to a state with lower degree of "order" (the liquid state).

A) This nuclear equation is an example of alpha-decay, where an unstable nucleus (uranium-235) decays into a daughter nucleus (thorum-231) releasing an alpha particle (a nucleum of helium, consisting of 2 protons and 2 neutrons). 

B) The other three types of decay are:
- beta minus decay: in an unstable nucleus, a neutron decays into a proton, releasing a fast moving electron and an antineutrino. Following this decay, the atomic number of the nucleus increases by 1 unit while its mass number remains the same
- beta plus decay: in an unstable nucleus, a proton decays into a neutron, releasing a fast moving positron and a neutrino. Following this decay, the atomic number of the nucleus decreases by 1 unit while its mass number remains the same
- gamma decay: a nucleus in excited states decays to its ground state by emitting a gamma photon, whose energy is equal to the difference in energy between the two nuclear levels.

C) The length of time of a decay process is usually expressed by using the concept of half life. The half life of a substance is the time it takes for the substance to decrease to half of its original amount. The equation that gives the amount left of a substance at time t is given by:
m(t) = m_0 e^{- \frac{t}{t_{1/2}}
where m0 is the original mass of the substance,and t_{1/2} is the half life.

7B1) In nuclear fusion, two smaller nuclei combine together (fuse) to form a new larger nucleus. An example of this process is the hydrogen-to-helium fusion, which occurs inside the stars, where two nuclei of hydrogen (one proton each) fuse together to form a nucleus of helium-4. In the nuclear fusion process, the sum of the masses of the initial nuclei is larger than the mass of the final nucleus, so the mass lost in the process has converted into energy, according to Einstein's formula: E=mc^2.
7B2) In nuclear fission, a nucleus of a heavy element absorbs a slow moving neutron, becoming unstable and decaying into smaller nuclei. An example of this process is the fission of uranium-235, which occurs inside nuclear power plants on Earth. In the process, uranium-235 decays into lighter nuclei and many neutrons, which are used to further induce other fission reactions with other nuclei of uranium-235. In the nuclear fission, the mass of the initial nucleus is greater than the masses of the final products, so the mass lost in the process has been converted into energy according to Einstein's formula: E=mc^2

8) An alternative energy source that involves the Earth is wind power: the air flows through turbines, which are put in motion by the wind. The motion of the turbines is then converted into electrical energy.
7 0
3 years ago
Read 2 more answers
A 3-m-high, 7-m-wide rectangular gate is hinged at the top edge and is restrained by a fixed ridge. Determine the hydrostatic fo
Shalnov [3]

Answer:

The Hydrostatic force is   F  =  137.2 kN

The location of pressure center is  Z  = 1.333 \ m  

Explanation:

From the question we are told that

   The height of the gate is  h =  3 \ m

     The weight of the gate is  w =  7 \  m

      The height of the water is  h_w  =  2 \ m

       The density of water is \rho_w  =  1000 \ kg/m^3

Note used h_w for height of water and height of gate immersed by water since both have the same value

The area of the gate immersed in water  is mathematically represented as

         A =  h_w  * w

substituting values

         A =  2*  7

         A =  14  \ m^2

The hydrostatic force is mathematically represented as

          F  =  \rho_w * g * h_f * A

Where

            h_f =h-  h_w

           h_f =3 -2

           h_f = 1\ m  

So  

              F  =  1000 * 9.8 * 1 * 14

            F  =  137.2 kN

The center of pressure is mathematically represented as

        Z  =  h_f + \frac{I_g}{h_f * A}

Where I_g is the moment of inertia of the gate which mathematically represented as

            I_g =  \frac{w * h_w^2}{12}

The h_w is the height of gate immersed in water

            I_g =  \frac{7  * 2^2 }{12}

             I_g = 4.667\ kg  m^2

Thus  

        Z  = 1  + \frac{4.66}{1 * 14}

        Z  = 1.333 \ m

3 0
3 years ago
What are some properties of transverse waves?
allsm [11]
They send out waves differently and cannot be heard easily
5 0
3 years ago
The tension of a guitar string is increased by 40%. By what factor odes the fundamental frequency of vibration change? a. 1.13 b
bogdanovich [222]

Answer:

<h3> b. 1.18</h3>

Explanation:

The fundamental frequency in string is expressed as;

F1 = 1/2L√T/m .... 1

L is the length of the string

T is the tension

m is the mass per unit length

If the tension is increased by 40%, the new tension will be;

T2 = T + 40%T

T2 = T + 0.4T

T2 = 1.4T

The new fundamental frequency will be;

F2 = 1/2L√1.4T/m ..... 2

Divide 1 by 2;

F2/F = (1/2L√1.4T/m)/1/2L√T/m)+

F2/F = √1.4T/m ÷ √T/m

F2/F = √1.4T/√m ×√m/√T

F2/F = √1.4T/√T

F2/F = 1.18√T/√T

F2/F = 1.18

F2 = 1.18F

Hence the fundamental frequency of vibration changes by a factor of 1.18

8 0
3 years ago
Other questions:
  • A man of mass M stands on a railroad car that is rounding an unbanked turn of radius R at speed v. His center of mass is height
    8·1 answer
  • A laser emits a cylindrical beam of light 2.3 mm in diameter. The average power of the laser is 2.4 mW . The laser shines its li
    15·1 answer
  • According to Newton’s First Law of Motion, if a ball is rolled in a straight line in an open field, what will happen to the ball
    5·1 answer
  • A heater gives off heat at a rate of 330 kj/min. what is the rate of heat output in kilocalories per hour? (1 cal 4.184 j)
    10·1 answer
  • What are three ways in which people use microwaves?
    5·2 answers
  • _____ is the preceived frequency of a sound wave.​
    15·1 answer
  • Find the intensity of a 55 dB sound given lo-10-12 wm2
    5·1 answer
  • According to the text, the specific things that people want in life are called:​
    5·1 answer
  • 1. In this activity, you will be looking for a relationship between the mass of the cart and the acceleration of the cart.
    8·1 answer
  • Find the recoil velocity of a 65kg ice hockey goalie who catches a 0.15kg hockey puck slapped at him at a velocity of 50m/s. Ass
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!