Answer:
(C) Independent variable
Explanation:
Independent is the variable used by the experimenter to vary a condition of interest in the experiment (temperature in this case). This measure is varied over a sensible range to induce changes in other aspects (dependent variables; level of aggression in this case) which are measured during the experiment.
Answer:
0.705 m/s²
Explanation:
a) The sprinter accelerates uniformly from rest and reaches a top speed of 35 km/h at the 67-m mark.
Using newton's law of motion:
v² = u² + 2as
v = final velocity = 35 km/h = 9.72 m/s, u = initial velocity = 0 km/h, s = distance = 67 m
9.72² = 0² + 2a(67)
134a = 94.484
a = 0.705 m/s²
b) The sprinter maintains this speed of 35 km/h for the next 88 meters. Therefore:
v = 35 km/h = 9.72 m/s, u = 35 km/h = 9.72 m/s, s = 88 m
v² = u² + 2as
9.72² = 9.72² + 2a(88)
176a = 9.72² - 9.72²
a = 0
c) During the last distance, the speed slows down from 35 km/h to 32 km/h.
u = 35 km/h = 9.72 m/s, v = 32 km/h = 8.89 m/s, s = 200 - (67 + 88) = 45 m
v² = u² + 2as
8.89² = 9.72² + 2a(45)
90a = 8.89² - 9.72²
90a = -15.4463
a = -0.1716 m/s²
The maximum acceleration is 0.705 m/s² which is from 0 to 67 m mark.
Answer:
Scalar quantity
Vector quantity
Explanation:
A scalar quantity is a quantity that is fully described by magnitude alone. Examples include; mass, temperature etc
A vector quantity is described by both magnitude and direction. E.g force, weight etc
-- If the work is done to make the object move faster, then
the work done becomes kinetic energy of the object.
-- If work is done on the object but it doesn't move any faster,
then there must be friction holding it back. In that case, the work
that's done just to keep the object moving becomes heat, in the
places where the friction acts on it.