Answer:
Option A is correct - While a guitar string is vibrating, you gently touch the midpoint of the string to ensure that the string does not vibrate at that point. The lowest-frequency standing wave that could be present on the string vibrates at twice the fundamental frequency.
Explanation:
Before touching the midpoint of the string, the string vibrates with one loop.
Fundamental frequency, f1 = v/(2*L)
Now, when the midpoint of the guitar string was touched, the string vibrates with two loops.
Hence, f2 = 2*v/(2*L)
f2 = 2*f1
Therefore, compared to the fundamental frequency the frequency would be double.
Option A is correct - While a guitar string is vibrating, you gently touch the midpoint of the string to ensure that the string does not vibrate at that point. The lowest-frequency standing wave that could be present on the string vibrates at twice the fundamental frequency.
Because they are placed in different habitable zones
<span>a scale of temperature with absolute zero as zero, and the triple point of water as exactly 273.16 degrees.</span>
The distance traveled by the particle at the given time interval is 0.28 m.
<h3>
Position of the particle at time, t = 0</h3>
The position of the particle at the given time is calculated as follows;
x = 2 sin2(t)
y = 2 cos2(t)
x(0) = 2 sin2(0) = 0
y(0) = 2 cos2(0) = 2(1) = 2
<h3>
Position of the particle at time, t = 4</h3>
x = 2 sin2(t)
y = 2 cos2(t)
x(4) = 2 sin2(4) = 0.28
y(4) = 2 cos2(4) = 2(1) = 1.98
<h3>Distance traveled by the particle at the given time interval</h3>
d = √[(x₄ - x₀)² + (y₄ - y₀)²]
d = √[(0.28 - 0)² + (1.98 - 2)²]
d = 0.28 m
Thus, the distance traveled by the particle at the given time interval is 0.28 m.
Learn more about distance here: brainly.com/question/23848540
#SPJ1
Answer:
11212121221212121212121212121212121212121212121221212
Explanation:
12121212 i am jj and i am 8