Choice ' C ' is a true statement.
The other choices aren't.
Answer:
The maximum potential difference is 186.02 x 10¹⁵ V
Explanation:
formula for calculating maximum potential difference

where;
Ke is coulomb's constant = 8.99 x 10⁹ Nm²/c²
k is the dielectric constant = 2.3
b is the outer radius of the conductor = 3 mm
a is the inner radius of the conductor = 0.8 mm
λ is the linear charge density = 18 x 10⁶ V/m
Substitute in these values in the above equation;

Therefore, the maximum potential difference this cable can withstand is 186.02 x 10¹⁵ V
Answer:
1) Half Girlfriend
2) I am Malala
3) Diamond fire
4)I too had a love story
5)Your Dream are Now Mine
Explanation:
I don't have a same pattern to read but mostly of romantic and fiction. I read less autobiographies but when I read I am Malala , it was an inspiring one.My favorite type of reading is romantic types and least favorite is non fiction especially History
Hahahahaha. Okay.
So basically , force is equal to mass into acceleration.
F=ma
so when F=ma , we get acceleration=6m/s/s
Force is doubled.
Mass is 1/3 times original.
2F=1/3ma
Now , we rearrange , and we get 6F=ma
So , now for 6 times the original force , we get 6 times the initial acceleration.
So new acceleration = 6*6= 36m/s/s
<span>The answer is: ultraviolet
The energy (E) of a photon is directly proportional to its frequency f, by Planck's
formula: E = hf, where h is Planck's constant (6.625 * 10**-34 joule-second).
The frequency is inversely proportional to the wavelength w by: f = c/w, where
c is the speed of light, 3.0 * 10**8 meters per second.
Combine these formulas and we see that the energy is inversely proportional to
the wavelength by: E = hc/w
If the energy is inversely proportional to the wavelength, a photon with twice the
energy has half the wavelength of our 442-nm. photon in this example.
So its wavelength is 221 nm. which is in the ultraviolet range.</span>