The answer is C. Since aluminum reacts with chloride displacing only Copper.
<u>Answer:</u>
<u>For a:</u> The standard Gibbs free energy of the reaction is -347.4 kJ
<u>For b:</u> The standard Gibbs free energy of the reaction is 746.91 kJ
<u>Explanation:</u>
Relationship between standard Gibbs free energy and standard electrode potential follows:
............(1)
The given chemical equation follows:

<u>Oxidation half reaction:</u>
( × 2)
<u>Reduction half reaction:</u> 
We are given:

Putting values in equation 1, we get:

Hence, the standard Gibbs free energy of the reaction is -347.4 kJ
The given chemical equation follows:

<u>Oxidation half reaction:</u>
( × 6)
<u>Reduction half reaction:</u> 
We are given:

Putting values in equation 1, we get:

Hence, the standard Gibbs free energy of the reaction is 746.91 kJ
Answer:
473 year
Explanation:
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
Given:
To reach 12.5% of reactant means that 0.125 of
is decomposed. So,
= 0.125
t = ?
t = 473 year
The molecules of hydrogen gas that are formed is when 48.7 g of sodium are added to water is 6.375 x 10²³ molecules
<u><em>calculation</em></u>
2 Na +2H₂O → 2 NaOH +H₂
Step 1: find the moles of sodium (Na)
moles =mass÷ molar mass
from periodic table the molar mass of Na = 23 g/mol
moles= 48.7 g÷ 23 g/mol =2.117 moles
Step 2:use the mole ratio to determine the moles of H₂
from given equation Na:H₂ is 2:1
therefore the moles of H₂ = 2.117 moles x 1/2=1.059 moles
Step 3: find the molecules of H₂ using the Avogadro's law
According to Avogadro's law 1 mole = 6.02 x 10²³ molecules
1.059 moles = ? molecules
by cross multiplication
= [(1.059 moles x 6.02 x10²³ molecules) / 1 mole] =6.375 x 10²³ molecules