As waves get closer to the beach they increase in energy
Answer:
required distance is 233.35 m
Explanation:
Given the data in the question;
Sound intensity
= 1.62 × 10⁻⁶ W/m²
distance r = 165 m
at what distance from the explosion is the sound intensity half this value?
we know that;
Sound intensity
is proportional to 1/(distance)²
i.e
∝ 1/r²
Now, let r² be the distance where sound intensity is half, i.e
₂ =
₁/2
Hence,
₂/
₁ = r₁²/r₂²
1/2 = (165)²/ r₂²
r₂² = 2 × (165)²
r₂² = 2 × 27225
r₂² = 54450
r₂ = √54450
r₂ = 233.35 m
Therefore, required distance is 233.35 m
Answer:
L= 12 light years
Explanation:
for length dilation we use the formula

now calculating Lo
Lo = 12.5×365×24×3600×3×10^8
= 1.183×10^17 m
now putting the values of v and Lo in the above equation we get

= 1.136×10^17 m
L=
m
so L= 12 light years
Answer:
They could be jumping off structures, running or climbing on rocks. They also could be participating in sports like soccer.
Explanation:
sources:
https://www.philippinesbasiceducation.us/2013/06/physical-activity-and-physical.html - about there play schedule
http://sportphil.com/category/articles/ - concil of philippines
Sorry that's all I could find.
To solve this problem we will apply the concepts related to gravitational potential energy.
This can be defined as the product between mass, gravity and body height.
Mathematically it can be expressed as


Therefore the change in the internal energy of the system is 255.78