1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pavel [41]
3 years ago
14

Which statement is always false for athletes participating in team sports?

Physics
1 answer:
tatyana61 [14]3 years ago
3 0
Which statement is always false for athletes participating in team sports?

Answer: Out of all the options shown above the one that best represents the statement that is alway false for athletes participating in team sports is answer choice C) Conflict resolution is a sign of poor sportsmanship. All the other choices are true when it comes to team sports.

I hope it helps, Regards.
You might be interested in
A 0.29 kg particle moves in an xy plane according to x(t) = - 19 + 1 t - 3 t3 and y(t) = 20 + 7 t - 9 t2, with x and y in meters
Artist 52 [7]

Answer:

Part a)

F = 7.76 N

Part b)

\theta = -137.7 degree

Part c)

\theta = -127.7 degree

Explanation:

As we know that acceleration is rate of change in velocity of the object

So here we know that

x = -19 + t - 3t^3

y = 20 + 7t - 9t^2

Part a)

differentiate x and y two times with respect to time to find the acceleration

a_x = \frac{d^2}{dt^2}(-19 + t - 3t^3)

a_x = \frac{d}{dt}(0 +1 - 9t^2)

a_x = -18t

a_y = \frac{d^2}{dt^2}(20 + 7t - 9t^2)

a_y = \frac{d}{dt}(0 +7 - 18t)

a_y = -18

Now the acceleration of the object is given as

\vec a = (-18t)\hat i + (-18)\hat j

at t= 1.1 s we have

\vec a = -19.8 \hat i - 18 \hat j

now the net force of the object is given as

\vec F = m\vec a

\vec F = (0.29 kg)(-19.8 \hat i - 18 \hat j)

\vec F = -5.74 \hat i - 5.22 \hat j

now magnitude of the force will be

F = \sqrt{5.74^2 + 5.22^2} = 7.76 N

Part b)

Direction of the force is given as

tan\theta = \frac{F_y}{F_x}

tan\theta = \frac{-5.22}{-5.74}

\theta = -137.7 degree

Part c)

For velocity of the particle we have

v_x = \frac{dx}[dt}

v_x = (0 +1 - 9t^2)

v_y = \frac{dy}{dt}

v_y = (0 +7 - 18t)

now at t = 1.1 s

\vec v = -9.89\hat i - 12.8 \hat j

now the direction of the velocity is given as

\theta = tan^{-1}(\frac{v_y}{v_x})

\theta = tan^{-1}(\frac{-12.8}{-9.89})

\theta = -127.7 degree

7 0
3 years ago
In most cases, what happens to a liquid when it cools?
erik [133]

Answer:

Option (A) and (F)

Explanation:

As the liquid cools down, it means the temperature decreases the density of the liquid increases in most o the cases.

Now the volume is inversely proportional to the density of substance so density increases.

7 0
4 years ago
The critical angle for water is 49°. If a ray of light
Sonja [21]

Answer:

Snell's Law states

Ni sin i = Nr sin r

Judging from the question the source of the ray is in the water (directed up)

or NI = 1 / sin 49      Ni = 1.325 deg     the critical angle

From inside the pond:

Nr = 1.325 * sin 45 / 1 = 94 deg  

So refraction can occur  outside the pond and you do not have total internal refection.

 

3 0
3 years ago
Multiple-Concept Example 13 presents useful background for this problem. The cheetah is one of the fastest accelerating animals,
Andre45 [30]

Answer:

9241.6 W or 12.39318 hp

Explanation:

u = Initial velocity = 0

v = Final velocity

m = Mass

t = Time taken

Energy

KE=\frac{1}{2}m(v^2-u^2)\\\Rightarrow KE=\frac{1}{2}108(30.4^2-0^2)\\\Rightarrow KE=49904.64\ Joules

Power

P=\frac{KE}{t}\\\Rightarrow P=\frac{49904.64}{5.4}\\\Rightarrow P=9241.6\ W

Converting to hp

1\ W=\frac{1}{745.7}\ hp

\\\Rightarrow 9241.6\ W=\frac{9241.6}{745.7}\ hp=12.39318\ hp

The power developed by the cheetah is 9241.6 W or 12.39318 hp

7 0
4 years ago
If you stood on a planet with four times the mass of Earth, and twice Earth's radius, how much would you weigh?
nikdorinn [45]

Answer:

1/4 times your earth's weight

Explanation:

assuming the Mass of earth = M

Radius of earth = R

∴ the mass of the planet= 4M

the radius of the planet = 4R

gravitational force of earth is given as = \frac{GM}{R^{2} }

where G is the gravitational constant

Gravitational force of the planet = \frac{G4M}{(4R)^{2} }

                                                       =\frac{G4M}{16R^{2} }

                                                       =\frac{GM}{4R^{2} }

recall, gravitational force of earth is given as = \frac{GM}{R^{2} }

∴Gravitational force of planet = 1/4 times the gravitational force of the earth

you would weigh 1/4 times your earth's weight

3 0
3 years ago
Other questions:
  • As relay runner A enters the 65-ft-long exchange zone with a speed of 30 ft/s, he begins to slow down. He hands the baton to run
    14·1 answer
  • True or False
    10·1 answer
  • ¿Qué es la velocidad?
    12·1 answer
  • A 1000-kg car is moving along a straight road down a 30∘30∘ slope at a constant speed of 20.0m/s20.0m/s. What is the net force a
    7·1 answer
  • What is the velocity of an object that has been in free fall for 1.5s?
    15·1 answer
  • The experiments Galileo performed, such as rolling a ball down an inclined plane, are important because they
    13·1 answer
  • Mr. Nakamora wants to test the accuracy of an old balance in his classroom compared to a brand-new balance that he knows is accu
    14·2 answers
  • Punishment is used to
    5·1 answer
  • How many meters are there in 666 miles? (1 mi = 1609 m)
    14·1 answer
  • When driving on roads that may be slippery: A. Always drive at the maximum speed limit. B. Use cruise control to maintain a stea
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!