1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
scoray [572]
3 years ago
11

How did rutherfords discovery effect the model of the atom

Physics
1 answer:
Kamila [148]3 years ago
7 0
<h2>Thomson proposed the plum pudding model of the atom, which had negatively-charged electrons embedded within a positively-charged "soup." Rutherford's gold foil experiment showed that the atom is mostly empty space with a tiny, dense, positively-charged nucleus.</h2>
You might be interested in
Apply the impulse-momentum relation and the work-energy theorem to calculate the maximum value of t if the cake is not to end up
loris [4]
Puto chupame el semen ok? right?
8 0
3 years ago
A commuter train passes a passenger platform at a constant speed of 40.4 m/s. The train horn is sounded at its characteristic fr
mihalych1998 [28]

(a) -83.6 Hz

Due to the Doppler effect, the frequency of the sound of the train horn appears shifted to the observer at rest, according to the formula:

f' = (\frac{v}{v\pm v_s})f

where

f' is the apparent frequency

v = 343 m/s is the speed of sound

v_s is the velocity of the source of the sound (positive if the source is moving away from the observer, negative if it is moving towards the observer)

f is the original frequency of the sound

Here we have

f = 350 Hz

When the train is approaching, we have

v_s = -40.4 m/s

So the frequency heard by the observer on the platform is

f' = (\frac{343 m/s}{343 m/s - 40.4 m/s})(350 Hz)=396.7 Hz

When the train has passed the platform, we have

v_s = +40.4 m/s

So the frequency heard by the observer on the platform is

f' = (\frac{343 m/s}{343 m/s + 40.4 m/s})(350 Hz)=313.1 Hz

Therefore the overall shift in frequency is

\Delta f = 313.1 Hz - 396.7 Hz = -83.6 Hz

And the negative sign means the frequency has decreased.

(b) 0.865 m

The wavelength and the frequency of a wave are related by the equation

v=\lambda f

where

v is the speed of the wave

\lambda is the wavelength

f is the frequency

When the train is approaching the platform, we have

v = 343 m/s (speed of sound)

f = f' = 396.7 Hz (apparent frequency)

Therefore the wavelength detected by a person on the platform is

\lambda' = \frac{v}{f'}=\frac{343 m/s}{396.7 Hz}=0.865m

5 0
3 years ago
A charge Q is uniformly spread over one surface of a very large nonconducting square elastic sheet having sides of length d. At
yaroslaw [1]

The electric field of a very large (essentially infinitely large) plane of charge is given by:

E = σ/(2ε₀)

E is the electric field, σ is the surface charge density, and ε₀ is the electric constant.

To determine σ:

σ = Q/A

Where Q is the total charge of the sheet and A is the sheet's area. The sheet is a square with a side length d, so A = d²:

σ = Q/d²

Make this substitution in the equation for E:

E = Q/(2ε₀d²)

We see that E is inversely proportional to the square of d:

E ∝ 1/d²

The electric field at P has some magnitude E. Now we double the side length of the sheet while keeping the same amount of charge Q distributed over the sheet. By the relationship of E with d, the electric field at P must now have a quarter of its original magnitude:

E_{new} = E/4

4 0
2 years ago
In a controlled experiment, which variable does the investigator change?
Bas_tet [7]

Answer:

The manipulated variable is also known as the independent variable

Explanation:

When remembering this remember independent as in you independently change the outcome

7 0
3 years ago
Read 2 more answers
Si se deja caer un carrito de una pista de coches sin friccion y su altura inicial es de 1.4 metros, cual es la velocidad maxima
Svet_ta [14]

Answer:

5.241\ \text{m/s}

Explanation:

m = Masa del coche

g = Aceleración debida a la gravedad = 9.81\ \text{m/s}^2

h = Altura = 1.4\ \text{m}

v = Velocidad del automóvil en la parte inferior de la pista

Aquí asumimos que el automóvil desciende verticalmente. La energía potencial del automóvil se completará convertida en energía cinética en la parte inferior de la pista ya que no hay pérdida de energía.

mgh=\dfrac{1}{2}mv^2\\\Rightarrow v=\sqrt{2gh}\\\Rightarrow v=\sqrt{2\times 9.81\times 1.4}\\\Rightarrow v=5.241\ \text{m/s}

La velocidad máxima que puede alcanzar el coche es 5.241\ \text{m/s}.

8 0
3 years ago
Other questions:
  • A Carnot air conditioner takes energy from the thermal energy of a room at 61°F and transfers it as heat to the outdoors, which
    11·1 answer
  • What forces contribute to density
    10·1 answer
  • What type of bones form inside the tendon of a muscle, where it crosses a joint?
    9·1 answer
  • If the emf produced in a wire is 0.88 volts and the wire moves perpendicular to a magnetic field of strength 0.075 newtons/amper
    9·2 answers
  • Ricardo, mass 85 kg, and Carmelita, who is lighter, are enjoying Lake Merced at dusk in a 20 kg canoe. When the canoe is at rest
    11·1 answer
  • In a two-slit experiment, the slit separation is 3.34 ⋅ 10 − 5 m. The interference pattern is created on a screen that is 3.30 m
    7·1 answer
  • is a constant related to the size and composition of the ball as well as the viscosity of the syrup. Find the rate at which grav
    8·1 answer
  • 1 point
    15·1 answer
  • The first car has twice the mass of a second car, but only half as much kinetic energy. When both cars increase their speed by 9
    6·2 answers
  • The diagram shows a skydiver at different points of her jump. At what point would her
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!