Answer:
The flux (volume of water per unit time) through the hoop will also double.
Explanation:
The flux = volume of water per unit time = flow rate of water through the hoop.
The Flow rate of water through the hoop is proportional to the area of the hoop, and the velocity of the water through the hoop.
This means that
Flow rate = AV
where A is the area of the hoop
V is the velocity of the water through the hoop
This flow rate = volume of water per unit time = Δv/Δt =Q
From all the above statements, we can say
Q = AV
From the equation, if we double the area, and the velocity of the stream of water through the hoop does not change, then, the volume of water per unit time will also double or we can say increases by a factor of 2
Answer:
If the turbulent velocity profile in a pipe of diameter 0.6 m may be approximated by u/U=(y/R)^(1/7), where u is in m/s and y is in m and 0.15 m from the pipe.
Explanation:
hope it helps
It may be an engine cooler, or it may be for the boats speed
But I think it is for cooling the engine down
Answer:
radius = 0.045 m
Explanation:
Given data:
density of oil = 780 kg/m^3
velocity = 20 m/s
height = 25 m
Total energy is = 57.5 kW
we have now
E = kinetic energy+ potential energy + flow work
![E = \dot m ( \frac{v^2}{2] + zg + p\nu)](https://tex.z-dn.net/?f=E%20%3D%20%5Cdot%20m%20%28%20%5Cfrac%7Bv%5E2%7D%7B2%5D%20%2B%20%20zg%20%2B%20p%5Cnu%29)
![E = \dot m( \frac{v^2}{2] + zg + p_{atm} \frac{1}{\rho})](https://tex.z-dn.net/?f=E%20%3D%20%5Cdot%20m%28%20%5Cfrac%7Bv%5E2%7D%7B2%5D%20%2B%20%20zg%20%2B%20p_%7Batm%7D%20%5Cfrac%7B1%7D%7B%5Crho%7D%29)

solving for flow rate
![\dot m = 99.977we know that [tex]\dot m = \rho AV](https://tex.z-dn.net/?f=%5Cdot%20m%20%3D%2099.977%3C%2Fp%3E%3Cp%3Ewe%20know%20that%20%3C%2Fp%3E%3Cp%3E%5Btex%5D%5Cdot%20m%20%20%3D%20%5Crho%20AV)

solving for d

d = 0.090 m
so radius = 0.045 m
Answer:The move from hubs (shared networks) to switched networks was a big improvement. Control over collisions, increased throughput, and the additional features offered by switches all provide ample incentive to upgrade infrastructure. But Layer 2 switched topologies are not without their difficulties. Extensive flat topologies can create congested broadcast domains and can involve compromises with security, redundancy, and load balancing. These issues can be mitigated through the use of virtual local area networks, or VLANs. This chapter provides the structure and operation of VLANs as standardized in IEEE 802.1Q. This discussion will include trunking methods used for interconnecting devices on VLANs.
Problem: Big Broadcast Domains
With any single shared media LAN segment, transmissions propagate through the entire segment. As traffic activity increases, more collisions occur and transmitting nodes must back off and wait before attempting the transmission again. While the collision is cleared, other nodes must also wait, further increasing congestion on the LAN segment.
The left side of Figure 4-1 depicts a small network in which PC 2 and PC 4 attempt transmissions at the same time. The frames propagate away from the computers, eventually colliding with each other somewhere in between the two nodes as shown on the right. The increased voltage and power then propagate away from the scene of the collision. Note that the collision does not continue past the switches on either end. These are the boundaries of the collision domain. This is one of the primary reasons for switches replacing hubs. Hubs (and access points) simply do not scale well as network traffic increases.