The weight could be different, metals have a higher mass than nonmetals, so when occupying the same amount of space, the weight of the metal is far more.
Explanation:
(a) Hooke's law:
F = kx
7.50 N = k (0.0300 m)
k = 250 N/m
(b) Angular frequency:
ω = √(k/m)
ω = √((250 N/m) / (0.500 kg))
ω = 22.4 rad/s
Frequency:
f = ω / (2π)
f = 3.56 cycles/s
Period:
T = 1/f
T = 0.281 s
(c) EE = ½ kx²
EE = ½ (250 N/m) (0.0500 m)²
EE = 0.313 J
(d) A = 0.0500 m
(e) vmax = Aω
vmax = (0.0500 m) (22.4 rad/s)
vmax = 1.12 m/s
amax = Aω²
amax = (0.0500 m) (22.4 rad/s)²
amax = 25.0 m/s²
(f) x = A cos(ωt)
x = (0.0500 m) cos(22.4 rad/s × 0.500 s)
x = 0.00919 m
(g) v = dx/dt = -Aω sin(ωt)
v = -(0.0500 m) (22.4 rad/s) sin(22.4 rad/s × 0.500 s)
v = -1.10 m/s
a = dv/dt = -Aω² cos(ωt)
a = -(0.0500 m) (22.4 rad/s)² cos(22.4 rad/s × 0.500 s)
a = -4.59 m/s²
I Think The answer is d I hope it helps My friend Message Me if I’m wrong and I’ll change My answer and fix it for you
Quasi frequency = 4√6
Quasi period = π√6/12
t ≈ 0.4045
<u>Explanation:</u>
Given:
Mass, m = 20g
τ = 400 dyn.s/cm
k = 3920
u(0) = 2
u'(0) = 0
General differential equation:
mu" + τu' + ku = 0
Replacing the variables with the known value:
20u" + 400u' + 3920u = 0
Divide each side by 20
u" + 20u' + 196u = 0
Determining the characteristic equation by replacing y" with r², y' with r and y with 1 in the differential equation.
r² + 20r + 196 = 0
Determining the roots:

r = -10 ± 4√6i
The general solution for two complex roots are:
y = c₁ eᵃt cosbt + c₂ eᵃt sinbt
with a the real part of the roots and b be the imaginary part of the roots.
Since, a = -10 and b = 4√6
u(t) = c₁e⁻¹⁰^t cos 4√6t + c₂e⁻¹⁰^t sin 4√6t
u(0) = 2
u'(0) = 0
(b)
Quasi frequency:
μ = 

(c)
Quasi period:
T = 2π / μ

(d)
|u(t)| < 0.05 cm
u(t) = |2e⁻¹⁰^t cos 4√6t + 5√6/6 e⁻¹⁰^t sin 4√6t < 0.05
solving for t:
τ = t ≈ 0.4045