Answer:
-39.2m/s
Explanation:
Using the equation of motion;
v = u + at
Since the ball is thrown upward, the acceleration due to gravity acting on it will be negative, hence a = -g
v = u - gt
Since g = 9.8m/s²
t = 4.0s
u = 0m/s
v = 0 + (-9.8)(4)
v = 0 + (-9.8)(4)
v = -39.2m/s
Hence the speed of the ball before release is -39.2m/s
<h2>
Answer</h2>
The physical state of the elements depends upon the <u>attraction forces </u>and their <u>kinetic energy</u>.
<h2>
Explanation</h2>
The elements or substances are fixed with each other with the help of different chemical forces including ionic bonding, covalent bonding, H- bonding etc. The strength of these forces is also one of the factors that affect their physical natures. For example, covalent or ionic bonds are the strongest bonds than all other bonds and metals that contain these forces are mostly in solid form. The kinetic motion of electrons in the element also affects the physical state of the element and potential of bonding.
We know, F = m * a
F = 10 * 5
F = 50 N
In short, Your Answer would be 50 Newtons
Hope this helps!