Answer: minimum speed of launch must be 7.45m/s
Explanation:
Given the following:
Height or distance (s) = 2.83m
The final velocity(Vf) at maximum height = 0
Upward motion, acceleration due to gravity(g) us negative = -9.8m/s^2
From the 3rd equation of motion:
V^2 = u^2 - 2gs
Where V = final velocity
u = initial velocity
Therefore, u = Vi
u = √Vf^2 - 2gs
u = √0^2 - 2(-9.8)(2.83)
u = √0 + 55.468
u = √55.468
u = 7.4476 m/s
u = 7.45m/s
Answer:
1.34352 kg
Explanation:
= Mass of water falling = 1 kg
h = Height of fall = 0.1 km
= Change in temperature = 0.1
c = Specific heat of water = 4186 J/kg K
g = Acceleration due to gravity = 9.81 m/s²
= Mass of water in the vessel
Here the potential energy will balance the internal energy

Mass of the water in the vessel is 1.34352 kg
Answer:
you need to be able to have long enough to reach and have it far away from things that are going to cause accidents
Answer:
What would most likely happen as a result of the generator in a wind turbine breaking?
The What would most likely happen as a result of the generator in a wind turbine breaking?
The blades would not be turned.
Less steam would be produced.
Electricity would not be generated.
Solar energy would not be absorbed.
The blades would not be turned.
Less steam would be produced.
Electricity would not be generated.
Solar energy would not be absorbed.
Explanation:
F
Answer:
0.01606 Newtons
Explanation:
r = Distance between the asteroid and Sally = 17000000 m
m₁ = Mass of the asteroid = 8.7× 10²⁰ kg
m₂ = Mass of Sally = 80 kg
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
From Newton's Universal law of gravity

The force Sally experiences is 0.01606 Newtons