Answer:
h = 36.4 cm
Explanation:
given,
spring constant = 2.5 x 10⁴ N/m
compressed distance = 11.2 cm = 0.112 m
mass of the child = 44 kg
maximum height = ?
by energy of conservation






h = 0.364 m
h = 36.4 cm
In general,
Power = (energy moved) / (time to move the energy) .
If it's mechanical power, then
Power = (work done) / (time to do the work) .
If it's electrical power, then it can be any one of these:
Power = (volts) x (amperes)
Power = (volts)² / (resistance, ohms)
Power = (amperes)² x (resistance, ohms) .
Whatever kind of energy you're dealing with, power always
turns out to be
(amount of energy produced, used, or moved)
divided by
(time taken to produce, use, or move the energy) .
A). Convection is heating the soup in the pot.
When you stick the spoon into the hot soup,
conduction heats the spoon all the way up to the end.
b). Water conducts heat a little bit.
But convection is much more responsible for the
uniform distribution of temperature in the kiddie pool.
c). The heat from the metal bench conducts directly
to the buttus epidermis when you sit on it.
d). You feel the heat on your face ... but not on the back of your
neck ... on account of radiation from the fire and the hot grill.
Yes. Even greater. Air resistance or drag becomes harder the faster an object goes. This is why when cars reach their max speed they don't accelerate as fast, because they are pushing harder against the wind. If I take a tennis ball and shoot it down a bottomless pit, a 400 kph, the drag will slow the ball down till it reaches terminal velocity.