Answer: 10.36m/s
How? Just divide 200m by 19.3 and you will get how fast he ran per m/s
Answer:
The correct answer is a) The kinetic energy of the ice increases by equal amounts for equal distances.
Explanation:
The law of conservation states that the energy cannot be created nor be destroyed but can be converted from one form to another.Before the ice even starts falling we already know that it possesses energy in the form of potential energy given by P=mgh where m is the mass of the ice , g is the acceleration due to gravity and h is the height of the ice above the ground whatever that may be, since a number is not given here.As the ice falls the energy is converted from potential energy to kinetic energy. We notice one thing about the equation for the potential energy P , which is that it is not only directly proportional to h but also is linear in h as well(which is the main reason why a) is correct) which means that if the ice drops by 1 meter the potential energy it will have lost would be ΔPE=mgΔh=-mg, where Δh is the change in its height which is 1 meter here.And according to the principle of conservation of energy this energy must be converted to kinetic energy so the ΔKE=-ΔPE=mg, and this process repeats and for each meter it falls, it picks up the same amount of kinetic energy equaling mg(which is the same as the loss in PE per each meter of fall). So a 2 meter decrease in height will result in an increase in KE of 2mg, a 3 meter decrease in height will result in an increase in KE of 3mg. gain in kinetic energy only depends on the drop in height, which is true irrespective of where the ice might happen to be in its journey close to the top or the bottom. So the drop in height of lets say x at any point in the journey will result in the same increase in KE = ΔKE = mgx. Which proves part a) to be correct.
Answer:
No, it's not there.
Explanation:
For a machine to be 100% efficient, it has to be with an output which is equal to its input. But machines have an out put less than an input, hence efficiency below 100%.
Work equals force × displacement (distance between initial point and end point is displacement)
if u follow this it becomes
work = 50 × 2 which is equal to 100
comment if u have more questions