<span>At an instant when the displacement is equal to a/2,
Potential energy U = 1/2ka(square) where a is displacement.
when a= a/2
U = 1/4ka(square)
U = E/4
Potential Energy = 1/4 Total energy</span>
The complex, highly technical formula for capacitors is
<em>Q = C V</em>
Charge = (capacitance) (voltage)
Charge = (3 F) (24 V)
<em>Charge = 72 Coulombs</em>
The positive plate of the capacitor is missing 72 coulombs worth of electrons. They were sucked into positive terminal of the battery stack.
The negative plate of the capacitor has 72 coulombs worth of extra electrons. They came from the negative terminal of the battery stack.
You should be aware that this is a humongous amount of charge ! An average <u><em>lightning bolt</em></u>, where electrons flow between a cloud and the ground for a short time, is estimated to transfer around <u><em>15 coulombs</em></u> of charge !
The scenario in the question involves a "supercapacitor". 3 F is is no ordinary component ... One distributor I checked lists one of these that's able to stand 24 volts on it, but that product costs $35 apiece, you have to order at least 100 of them at a time, and they take 2 weeks to get.
Also, IF you can charge this animal to 24 volts, it will hold 864J of energy. You'd probably have a hard time accomplishing this task with a bag of leftover AA batteries.
Answer:
a. xy
Explanation:
The Faraday's law of induction can be used to express the relationship between the electric field line integral and the magnetic flux rate change in a closed loop. In order to ensure that the relationship between the two variables is equivalent to zero, the integration should be conducted on the xy plane. The correct option is option a.
Answer:
The average velocity of a train moving along a straight track if its displacement is 192 m was during a time period of 8.0 s is 24
.
Explanation:
Velocity is a physical quantity that expresses the relationship between the space traveled by an object and the time used for it. Then, the average velocity relates the change in position to the time taken to effect that change.

Velocity considers the direction in which an object moves, so it is considered a vector magnitude.
In this case, the displacement is 192 m and the time period is 8 s. Replacing:

Solving:
velocity= 24 
<em><u>The average velocity of a train moving along a straight track if its displacement is 192 m was during a time period of 8.0 s is 24 </u></em>
<em><u>.</u></em>
Answer:
Velocidad en m / s = 72,25 m / s
Explanation:
Dado
Distancia a recorrer por el coche de carreras = 87 Km
1 km = 1000 m
Por lo tanto, 87 km = 87000 m
Tiempo necesario para viajar 87 km / 87000 metros = 20 minutos o 20 * 60 = 1200 segundos
Velocidad en m / s = 87000/1200
Velocidad en m / s = 72,25 m / s