1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
larisa86 [58]
3 years ago
5

What are geothermal heat pumps used for?

Physics
1 answer:
Igoryamba3 years ago
8 0
Heat pumps are also known as refrigeration units for heating and cooling homes by taking heat from air outside in the winter time and then reversed to take heat out of the inside of a home in the summertime. The Geothermal heat pumps take heat from the ground by way of buried pipes deep in ground with chemicals such as water and glycol or similar and transfers that heat into homes in the winter time.
Heating buildings
You might be interested in
Explain why the same side of the moon is always facing Earth.
Ad libitum [116K]

Answer:

The moon keeps the same face pointing towards the Earth because its rate of spin is tidally locked so that it is synchronized with its rate of revolution (the time needed to complete one orbit). In other words, the moon rotates exactly once every time it circles the Earth.

7 0
3 years ago
Charge Q is distributed uniformly throughout the volume of an insulating sphere of radius R = 4.00 cm. At a distance of r = 8.00
Elena L [17]

Answer:

2.62898\times 10^{-6}\ C/m^3

1979.99974\ N/C

Explanation:

k = Coulomb constant = 8.99\times 10^{9}\ Nm^2/C^2

Q = Charge

r = Distance = 8 cm

R = Radius = 4 cm

Electric field is given by

E=\dfrac{kQ}{r^2}\\\Rightarrow Q=\dfrac{Er^2}{k}\\\Rightarrow E=\dfrac{990\times 0.08^2}{8.99\times 10^{9}}\\\Rightarrow Q=7.04783\times 10^{-10}\ C

Volume charge density is given by

\sigma=\dfrac{Q}{\dfrac{4}{3}\pi R^3}\\\Rightarrow \sigma=\dfrac{7.04783\times 10^{-10}}{\dfrac{4}{3}\pi (0.04)^3}\\\Rightarrow \sigma=2.62898\times 10^{-6}\ C/m^3

The volume charge density for the sphere is 2.62898\times 10^{-6}\ C/m^3

E=\dfrac{kQr}{R^3}\\\Rightarrow E=\dfrac{8.99\times 10^9\times 7.04783\times 10^{-10}\times 0.02}{0.04^3}\\\Rightarrow E=1979.99974\ N/C

The magnitude of the electric field is 1979.99974\ N/C

8 0
3 years ago
Consider to cars traveling directly towards each other. Car A has twice the mass of Car B. In order for the cars to completely s
Greeley [361]

Please mark brainliest you answer is B).

Have a good night!

7 0
3 years ago
Which of the following is an effect of the electric force?
stich3 [128]

As we know that two charges exert force on each other when they are placed near to each other

The force between two charges is given as

F = \frac{kq_1q_2}{r^2}

here we know that

q_1, q_2 = two different point charges

r = distance between two point charges

also we know that two similar charges always repel each other while two opposite charges always attract each other

so here correct answer would be

<em>A. A positive and negative charge attract each other.</em>

6 0
3 years ago
Read 2 more answers
The suspension system of a 1700 kg automobile "sags" 7.7 cm when the chassis is placed on it. Also, the oscillation amplitude de
spin [16.1K]

Answer:

the spring constant k = 5.409*10^4 \ N/m

the value for the damping constant \\ \\b = 1.518 *10^3 \ kg/s

Explanation:

From Hooke's Law

F = kx\\\\k =\frac{F}{x}\\\\where \ F = mg\\\\k = \frac{mg}{x}\\\\given \ that:\\\\mass \ of \ each \ wheel = 425 \ kg\\\\x = 7.7cm = 0.077 m\\\\g = 9.8 \ m/s^2\\\\Then;\\\\k = \frac{425 \ kg * 9.8 \ m/s^2}{0.077 \ m}\\\\k = 5.409*10^4 \ N/m

Thus; the spring constant k = 5.409*10^4 \ N/m

The amplitude is decreasing 37% during one period of the motion

e^{\frac{-bT}{2m}}= \frac{37}{100}\\\\e^{\frac{-bT}{2m}}= 0.37\\\\\frac{-bT}{2m} = In(0.37)\\\\\frac{-bT}{2m} = -0.9943\\\\b = \frac{2m(0.9943)}{T}\\\\b = \frac{2m(0.9943)}{\frac{2 \pi}{\omega}}\\\\b = \frac{m(0.9943) \ ( \omega) )}{ \pi}

b = \frac{m(0.9943)(\sqrt{\frac{k}{m})}}{\pi}\\\\b = \frac{425*(0.9943)(\sqrt{\frac{5.409*10^4}{425}) }    }{3.14}\\\\b = 1518.24 \ kg/s\\\\b = 1.518 *10^3 \ kg/s

Therefore; the value for the damping constant \\ \\b = 1.518 *10^3 \ kg/s

5 0
3 years ago
Other questions:
  • A ledge on a building is 20 m above the ground. A taut rope attached to a 4.0 kg can of paint sitting on the ledge passes up ove
    15·1 answer
  • When 100 J are put into a device that puts out 40 J, the efficiency of the device is A. 40%. B. 50%. C. 60%. D. 140%.
    9·1 answer
  • Change a speed of 72.4 miles per hour to its equivalent in meters per second.
    9·1 answer
  • Does the mass of a supermassive black hole correlate with any other part of a galaxy?
    13·1 answer
  • A foot player runs 1.6m/s and has a KE of 790 J. What is his mass?
    6·1 answer
  • In which situation is the gravitational force between two objects hard to detect?
    14·2 answers
  • Sound travels through air at 343 m/s at 20 °C. A bat emits an ultrasonic squeak and hears the echo 0.05 second later . How far a
    7·1 answer
  • What object currently has the most gravitational potential energy?<br><br>A, B, C, or D​
    5·1 answer
  • Newtons first law of motion is also called galelios law of_______?
    15·2 answers
  • If you wanted to
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!